Objectives: Macrolides have a long history of use in animals and humans. Dynamics of macrolide-antibiotic resistance genes (ARGs) in waterways from the origin to the sea has not been reported.
Methods: Resistant bacterial rate was measured by culture method, and copy numbers of macrolide-ARGs, mef(A), erm(B), mph(B), mef(C)-mph(G), and mobile genetic elements (MGEs) traI and IntI1 were quantitated in environmental DNA.
Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment.
View Article and Find Full Text PDFCholine-O-sulfate (2-(trimethylammonio)ethyl sulfate, COS) is a naturally occurring osmolyte that is synthesized by plants, lichens, algae, fungi, and several bacterial species. We examined the inhibitory effects of COS on amyloid formation of the human islet amyloid polypeptide (hIAPP or amylin) using a thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy and transmission electron microscopy. The results showed that COS suppresses a conformational change of hIAPP from a random coil to a β-sheet structure, resulting in the inhibition of amyloid formation.
View Article and Find Full Text PDF