Publications by authors named "Ayaka Higuchi"

Article Synopsis
  • Polarization volume gratings (PVGs) made from chiral nematic liquid crystals hold promise as versatile holographic optical elements, but their fabrication with varying pattern periods is challenging.
  • The researchers created PVGs by using two-beam interference photoalignment on a flexible polyimide substrate, allowing for an in-plane gradient of the pattern period based on the local interference angle.
  • The successful creation of a PVG featuring a linearly graded sub-micrometer period highlights the method's potential for producing custom-designed PVGs.
View Article and Find Full Text PDF

The yeast strain Saccharomyces cerevisiae is an eukaryotic organism that has been widely used for the production of fermented foods. Most cells secrete extracellular vesicles (EVs), small particles composed of lipid membranes. Elucidating the role of EVs as a new intercellular communication system and developing novel EV-based therapies have attracted the increased attention of researchers.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) encapsulate various bioactive molecules, and much effort has been directed towards developing a novel EV-based therapy. Although recent studies reported the secretion of EVs from probiotics baker's yeast Saccharomyces cerevisiae (S. cerevisiae), their properties and functions remain obscure.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) secreted from probiotics, defined as live microorganisms with beneficial effects on the host, are expected to be new nanomaterials for EV-based therapy. To clarify the usability of probiotic-derived EVs in terms of EV-based therapy, we systematically evaluated their characteristics, including the yield, physicochemical properties, the cellular uptake mechanism, and biological functions, using three different types of probiotics: , and WCFS1. secreted the largest amounts of EVs, whereas all the EVs showed comparable particle sizes and zeta potentials, ranging from 100 to 150 nm and -8 to -10 mV, respectively.

View Article and Find Full Text PDF

Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS. Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations.

View Article and Find Full Text PDF

We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs.

View Article and Find Full Text PDF