Publications by authors named "Ayaho Yamamoto"

Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection.

View Article and Find Full Text PDF

Oxidative stress (OS) in the airway epithelium is associated with inflammation, cell damage, and mitochondrial dysfunction that may initiate or worsen respiratory disease. Redox regulation maintains the equilibrium of pro-oxidant/antioxidant reactions but can be disturbed by environmental exposures. The mechanism(s) underlying the induction and impact of OS on airway epithelium and how these influences on respiratory disease is poorly understood.

View Article and Find Full Text PDF

Oxidative stress (OS) in the airway epithelium is associated with cell damage, inflammation, and mitochondrial dysfunction that may initiate or worsen respiratory disease. However, it is unclear whether exogenous antioxidants can provide protection to the airway epithelium from OS. Resveratrol and astaxanthin are nutritional compounds that have shown diverse benefits including protection against OS and inflammation in various situations.

View Article and Find Full Text PDF

Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium.

View Article and Find Full Text PDF

Background: Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in >554M cases and >6.3M deaths worldwide. The disease caused by SARS-CoV-2, COVID-19, has resulted in a broad range of clinical symptoms differing in severity.

View Article and Find Full Text PDF

Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections.

View Article and Find Full Text PDF

The CXC chemokine ligand-13 (CXCL13) is a chemoattractant of B cells and has been implicated in the progression of many cancers. So far, CXCL13 and its related receptor CXCR5 have been proved to regulate cancer cell migration as well as tumour metastasis. However, the role of CXCL13-CXCR5 axis in metastasis of lung cancer is still poorly understood.

View Article and Find Full Text PDF

CCL5 (previously called RANTES) was originally recognized as a product of activated T cells, and plays a crucial role in the migration and metastasis of human cancer cells. It has been reported that the effect of CCL5 is mediated via CCR receptors. We found that human chondrosarcoma tissues had significant expression of the CCL5 and CCR5, which was higher than that in normal cartilage.

View Article and Find Full Text PDF