Publications by authors named "Ayah Rebhi Hilles"

Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3--glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether.

View Article and Find Full Text PDF

Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties.

View Article and Find Full Text PDF

Cancer is a major disease with a high mortality rate worldwide. In many countries, cancer is considered to be the second most common cause of death after cardiovascular disease. The clinical management of cancer continues to be a challenge as conventional treatments, such as chemotherapy and radiation therapy, have limitations due to their toxicity profiles.

View Article and Find Full Text PDF

Ibuprofen is a well-known non-steroidal anti-inflammatory (NSAID) medicine that is often used to treat inflammation in general. When given orally, it produces gastrointestinal issues which lead to lower patient compliance. Ibuprofen transdermal administration improves both patient compliance and the efficacy of the drug.

View Article and Find Full Text PDF

Hydrogels are known for their leading role in biomaterial systems involving pharmaceuticals that fascinate material scientists to work on the wide variety of biomedical applications. The physical and mechanical properties of hydrogels, along with their biodegradability and biocompatibility characteristics, have made them an attractive and flexible tool with various applications such as imaging, diagnosis and treatment. The water-cherishing nature of hydrogels and their capacity to swell-contingent upon a few ecological signals or the simple presence of water-is alluring for drug conveyance applications.

View Article and Find Full Text PDF

Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal's physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach.

View Article and Find Full Text PDF

Over the last few years, several attempts have been made to replace petrochemical products with renewable and biodegradable components. The most challenging part of this approach is to obtain bio-based materials with properties and functions equivalent to those of synthetic products. Various naturally occurring polymers such as starch, collagen, alginate, cellulose, and chitin represent attractive candidates as they could reduce dependence on synthetic products and consequently positively impact the environment.

View Article and Find Full Text PDF

Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs.

View Article and Find Full Text PDF

Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance.

View Article and Find Full Text PDF