The current study investigates removing tetracycline from water using batch, column, and tank experiments with statistical modelling using ANN for continuous tests. An artificial neural network (ANN) using the Levenberg-Marquardt back-propagation (LMA) training algorithm is constructed to compare the effectiveness of Tetracycline removal from aqueous solution using the sorption technique with prepared adsorbent. Several characterization analyses XRD, FT-IR, and SEM are employed for prepared Brownmillerite (CaFeO)-Na alginate beads.
View Article and Find Full Text PDFChemosphere
December 2023
Estrogenic hormones, found as micropollutants in water systems, give rise to grave concerns for human health and marine ecosystems, triggering a cascade of adverse effects. This research presents an innovative manufacturing approach using nanoscale layered double hydroxides of magnesium and iron, with sodium dodecyl sulfate surfactant, to create highly efficient sorbent cement kiln dust (CKD) based beads (CKD/MgFe-SDS-LDH-beads). These beads effectively remove estrone from water.
View Article and Find Full Text PDFA new green reactive adsorbent (calcium ferric oxide silica sand (CFO-SS)) made from wastepaper sludge ash and ferric ions was synthesised and shown to remove tetracycline antibiotics (TC) from contaminated water effectively. The synthesised sand was dried at 95 °C, and a series of batch and fixed bed experiments were performed to determine the optimum operating conditions. Results showed that the adsorption capacity of the CFO-SS increases with the concentration gradient between the solid and liquid phases.
View Article and Find Full Text PDFThe presence of toxic cadmium ions in the wastewater resulted from industrial sector forms the critical issue for public health and ecosystem. This study determines the ability of four vertical subsurface flow constructed wetlands units in the treatment of simulated wastewater laden with cadmium ions. This was achieved through using sewage sludge byproduct as alternative for the traditional sand to be substrate for aforementioned units in order to satisfy the sustainable concepts; however, Canna indica and Typha domingensis can apply to enhance the cadmium removal.
View Article and Find Full Text PDFThis study investigates the effectiveness of using Iraqi clay as a low-permeability layer to prevent the migration of lead and nickel ions in groundwater-aquifers. Tests of batch operation have been conducted to determine the optimal conditions for removing Pb ions, which were found to be 120 minutes of contact time, a pH of 5, 0.12 g of clay per 100 mL of solution, and an agitation of 250 rpm.
View Article and Find Full Text PDFPreparation of new sorbent from precipitation of nano-sized (Mg/Fe-CTAB)- layered double hydroxide (LDH) on the surfaces of sewage sludge byproduct to remove the anionic and cationic dyes was the focal point of this work. The presence of nanoparticles and enlarged of interlayers by CTAB intercalation have increased the sludge surface area from 5.34 to 10.
View Article and Find Full Text PDFThe provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people's lives.
View Article and Find Full Text PDFTo apply the principles of sustainability, this study aims to prepare the composite sorbent from mixing of solid wastes that resulted from activities of treatment plants for wastewater and water supply. The manufacturing process depends on the mixing of sewage sludge with waterworks sludge at different proportions and the best mixture is modified by ferric nitrate solution. The prepared composite sorbent was evaluated as permeable reactive barrier (PRB) in the capturing of methylene blue (MB) dye presented in the simulated groundwater.
View Article and Find Full Text PDFWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2019
Iron slag is a byproduct generated in huge quantities from recycled remnants of iron and steel factories; therefore, the possibility of using this waste in the removal of benzaldehyde from contaminated water offers an excellent topic in sustainability field. Results reveal that the removal efficiency was equal to 85% for the interaction of slag and water contaminated with benzaldehyde at the best operational conditions of 0.3 g/100 mL, 6, 180 min, and 250 rpm for the sorbent dosage, initial pH, agitation time, and speed, respectively with 300 mg/L initial concentration.
View Article and Find Full Text PDFComputer solutions (COMSOL) Multiphysics 3.5a software was used for simulating the one-dimensional equilibrium transport of the lead-phenol binary system including the sorption process through saturated sandy soil as the aquifer and granular dead anaerobic sludge (GDAS) as the permeable reactive barrier. Fourier-transform infrared spectroscopy analysis proved that the carboxylic and alcohol groups are responsible for the bio-sorption of lead onto GDAS, while phosphines, aromatic and alkane are the functional groups responsible for the bio-sorption of phenol.
View Article and Find Full Text PDFThe hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed.
View Article and Find Full Text PDF