Publications by authors named "Ayaat M Mahmoud"

Poly(2-oxazoline)s (POx) have received substantial attention as poly(ethylene glycol) (PEG) alternatives in the biomedical field due to their biocompatibility, high functionality, and ease of synthesis. While POx have demonstrated strong potential as biomaterial constituents, the larger family of poly(cyclic imino ether)s (PCIE) to which POx belongs remains widely underexplored. One highly interesting sub-class of PCIE is poly(2,4-disubstituted-2-oxazoline)s (PdOx), which bear an additional substituent on the backbone of the polymers' repeating units.

View Article and Find Full Text PDF

An in-depth understanding of the effect of physicochemical properties of nanocarriers on their cellular uptake and fate is crucial for the development of novel delivery systems. In this study, well-defined hydrophobic carboxylated poly(3-hydroxypropionate)-based comb polymers were synthesized. Two oligo(3-hydroxypropionate) (HP) of different degrees of polymerization (DP; 5 and 9) bearing α-vinyl end-groups were obtained by an hydrogen transfer polymerization (HTP)-liquid/liquid extraction strategy.

View Article and Find Full Text PDF

Cellular uptake and intracellular targeting to specific organelles are key events in the cellular processing of nanomaterials. Herein, we perform a detailed structure-property relationship study on carboxylic acid-side-chain-bearing polyacrylates to provide design criteria for the manipulation of their cellular interactions. Redox-initiated reversible addition-fragmentation chain-transfer (RRAFT) polymerization of three -butyl-protected -acylated amino ester-based acrylate monomers of different substitutions and degrees of polymerization (DPs) yielded defined and pH-responsive carboxylic acid-side-chain polymers upon deprotection (-acetyl, DP 1: P(M); -propionyl, DP 1: P(E), DP 2: P(E)).

View Article and Find Full Text PDF

A detailed understanding of the cellular uptake and trafficking of nanomaterials is essential for the design of "smart" intracellular drug delivery vehicles. Typically, cellular interactions can be tailored by endowing materials with specific properties, for example, through the introduction of charges or targeting groups. In this study, water-soluble carboxylated -acylated poly(amino ester)-based comb polymers of different degree of polymerization and side-chain modification were synthesized via a combination of spontaneous zwitterionic copolymerization and redox-initiated reversible addition-fragmentation chain-transfer polymerization and fully characterized by H NMR spectroscopy and size exclusion chromatography.

View Article and Find Full Text PDF