Based on recent clinical trials using sodium-glucose co-transporter 2 inhibitor (SGLT2i) demonstrating the significant improvement of outcomes of diabetic kidney disease (DKD), the paradigm shift from "glomerulocentric" to "tubule centric" pathophysiology in DKD progression has been highlighted. Several responsible mechanisms for renoprotective effects by SGLT2i have been proposed recently, but the changes in proximal tubule-specific gene expression by SGLT2i in diabetic mice have not been elucidated. We report the analysis of the proximal tubular-specific pathway, demonstrating the downregulation of oxidative phosphorylation in dapagliflozin-treated mice, a type 2 diabetic model.
View Article and Find Full Text PDFKidney hypertrophy is a common clinical feature in patients with diabetes and is associated with poor renal outcomes. Initial cell proliferation followed by cellular hypertrophy are considered the responsible mechanisms for diabetic kidney hypertrophy. However, whether similar responses against hyperglycemia continue in the chronic phase in diabetes is unclear.
View Article and Find Full Text PDF