Inorganic carbon fixation is essential to sustain life on Earth, and the reductive tricarboxylic acid (rTCA) cycle is one of the most ancient carbon fixation metabolisms. A combination of genomic, enzymatic, and metabolomic analyses of a deeply branching chemolithotrophic ABI70S6 revealed a previously unknown reversible TCA cycle whose direction was controlled by the available carbon source(s). Under a chemolithoautotrophic condition, a rTCA cycle occurred with the reverse reaction of citrate synthase (CS) and not with the adenosine 5'-triphosphate-dependent citrate cleavage reactions that had been regarded as essential for the conventional rTCA cycle.
View Article and Find Full Text PDFThe surface tension of the aqueous solution of 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC(8)diol) was measured as a function of temperature and concentration under atmospheric pressure. The interfacial density and the entropy and energy of adsorption were evaluated and compared to those obtained for the adsorption of 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC(10)diol) at the hexane solution/water interface. The surface tension curves show a break point corresponding to a phase transition of the adsorbed FC(8)diol film.
View Article and Find Full Text PDFA cobalt(II) compound, [Co(C5C12C10-terpy)2](BF4)2 [C5C12C10-terpy = 4',5' ''-decyl-1' ''-(heptadecyloxy)-2,2':6',2' '-terpyridine] with branched alkyl chains, based on a terpyridine frame, was synthesized. The cobalt(II) compound exhibits a spin transition between low-spin and high-spin with a thermal hysteresis loop (T(1/2) upward arrow = 288 K and T(1/2) downward arrow = 284 K) at the liquid-crystal transition temperature. It is the first example in the cobalt(II) compounds in which the spin transition occurs at the crystal-liquid crystal transition temperature.
View Article and Find Full Text PDFThe iron(II) compounds [Fe(3Cn-L)2(NCS)2] (n = 6 (1), n = 8 (2), n = 10 (3), n = 12 (4), n = 14 (5), n = 16 (6), n = 18 (7), n = 20 (8), and n = 22 (9)) were synthesized and their physical properties characterized by polarizing optical microscopy, differential scanning calorimetry, and powder X-ray analysis, where 3Cn-L denotes bidentate Schiff-base ligands formed from the corresponding aniline derivatives and pyridine-2-carboxyaldehyde. The iron(II) compounds 4-8 exhibited crystal to liquid-crystal transitions at 318, 334, 345, 338, and 347 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the compounds 1-9 exhibit spin-crossover behavior between the high-spin and low-spin states and a photoinduced spin transition from a low-spin state to a metastable high-spin state.
View Article and Find Full Text PDF