Gum Arabic underwent enzymatic modification with curcumin oxidation products, prompting self-assembly in water at lower concentrations than native gum Arabic, which was fully soluble. The resulting particles displayed a narrow size distribution, suggestive of a micellization mechanism akin to Critical Micellization Concentration (CMC) in surfactants or Critical Aggregation Concentration (CAC) in polymers. Accurately determining CAC is vital for utilizing polymers in molecule encapsulation, but precise measurement is challenging, requiring multiple techniques.
View Article and Find Full Text PDFThe encapsulation of curcumin in micellar caseins (MCs) and the production of powder were performed by spray-drying. Nearly 97% of the curcumin was retained and the yellow powder showed a typical high casein powder morphology. The hygroscopic properties were determined, slight differences reflected less available hydrophobic sites when curcumin was bound to casein, favoring interactions with water in curcumin-enriched MC powders.
View Article and Find Full Text PDFIn this study, the ability of micellar casein (MC) to interact with curcumin during acidification and to produce acid gel was investigated. Steady-state fluorescence spectroscopy of curcumin variation and fluorescence quenching of caseins upon binding with curcumin molecules were evidenced. Increasing the temperature from 20 to 35 °C enhanced MC-curcumin interactions as reflected by the increase in the binding constant from 0.
View Article and Find Full Text PDF