Objective: Elastin gene deletion or mutation leads to arterial stenoses due to vascular smooth muscle cell (SMC) proliferation. Human induced pluripotent stem cells-derived SMCs can model the elastin insufficiency phenotype in vitro but show only partial rescue with rapamycin. Our objective was to identify drug candidates with superior efficacy in rescuing the SMC phenotype in elastin insufficiency patients.
View Article and Find Full Text PDFConditional deletion of Gata4 in Sertoli cells (SCs) of adult mice has been shown to increase permeability of the blood-testis barrier (BTB) and disrupt spermatogenesis. To gain insight into the molecular underpinnings of these phenotypic abnormalities, we assessed the impact of Gata4 gene silencing in cell culture models. Microarray hybridization identified genes dysregulated by siRNA-mediated inhibition of Gata4 in TM4 cells, an immortalized mouse SC line.
View Article and Find Full Text PDFTranscription factor GATA4 is expressed in somatic cells of the mammalian testis. Gene targeting studies in mice have shown that GATA4 is essential for proper differentiation and function of Sertoli cells. The role of GATA4 in Leydig cell development, however, remains controversial, because targeted mutagenesis experiments in mice have not shown a consistent phenotype, possibly due to context-dependent effects or compensatory responses.
View Article and Find Full Text PDF