Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte.
View Article and Find Full Text PDFGold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability.
View Article and Find Full Text PDFBovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes.
View Article and Find Full Text PDFAn unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid, based on MXene@NaAsc nanocomposites, CdSe@ZnS quantum dots and molecularly imprinted polymer composites modified glass carbon electrode. MXene@NaAsc stably enhanced the electron transfer and improved electrochemiluminescence intensity by acting as a base platform and signal amplifier for CdSe@ZnS quantum dots. Specific molecular imprinting cavities based on electropolymerization with o-phenylenediamine were formed to specifically identify uric acid.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
July 2023
As common mental disorders, depression and anxiety impact people all around the world. Recent studies have found that the gut microbiome plays an important role in mental health. It is becoming possible to treat mental disorders by regulating the composition of the gut microbiota.
View Article and Find Full Text PDFHuman IgG is one of the most important immunoglobulins in the human body. The present study described the fabrication of four kinds of layer-by-layer structures of copper metal-organic frameworks (Cu-MOFs) on the working electrode by electrodeposition, which were then applied as an electrochemical sensor for the sensitive determination of IgG in serum. First, MOFs synthesized using different deposition potentials are expected to have varied morphology and properties.
View Article and Find Full Text PDFBioelectrochemistry
April 2022
Trimethylamine N-oxide (TMAO) is considered to be a novel biomarker of cardiovascular diseases. However, the traditional TMAO detection method has failed to meet the requirements of real-time and point-of-care tests. Herein, a novel TMAO detection method based on microbial electrochemical technology is established, which realizes the direct conversion of TMAO concentration into electrical signals.
View Article and Find Full Text PDFAn advanced molecularly imprinted electrochemical sensor with high sensitivity and selectivity for the detection of Human immunoglobulin G (IgG) was successfully constructed. With acrylamide imprinting systems, surface imprinting on the nanoparticles CuFeO targeted at IgG was employed to prepare molecularly imprinted polymer, which served as recognition element for the electrochemical sensor. Furthermore, the sensor harnessed a molybdenum disulfide (MoS)@nitrogen doped graphene quantum dots (N-GQDs) with ionic liquid (IL) nanocomposite for signal amplification.
View Article and Find Full Text PDFIn this paper, molecularly imprinted photonic crystal hydrogels (MIPHs) were prepared by combining photonic crystals with molecular imprinting technology. The MIPHs were used as optical sensors for the rapid reorganization and detection of melamine in water samples. In this experiment, melamine was used as a template molecule, and the MIPHs were prepared by successive self-assembly, polymerization, and template removal.
View Article and Find Full Text PDF