Publications by authors named "Axelle Kerstens"

Background: Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points.

View Article and Find Full Text PDF

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (T) cells resident in the brain presents one such potential therapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • Optical mesoscale imaging bridges the gap between cellular and organism-level visualization, enabling the imaging of larger samples than traditional light microscopy.
  • Despite its advancements, challenges like optical distortions, shadowing, and limitations in labeling, clearing, and handling arise with larger specimens.
  • The manuscript discusses efforts to enhance quantitative analysis in mesoscale imaging by incorporating digital/physical phantoms and artificial intelligence, aiming for progress similar to quantitative tomography in medical imaging.
View Article and Find Full Text PDF

The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia.

View Article and Find Full Text PDF

Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models.

View Article and Find Full Text PDF

Neuromuscular junctions (NMJs) ensure communication between motor neurons (MNs) and muscle; however, in MN disorders, such as amyotrophic lateral sclerosis (ALS), NMJs degenerate resulting in muscle atrophy. The aim of this study was to establish a versatile and reproducible in vitro model of a human motor unit to investigate the effects of ALS-causing mutations. Therefore, we generated a co-culture of human induced pluripotent stem cell (iPSC)-derived MNs and human primary mesoangioblast-derived myotubes in microfluidic devices.

View Article and Find Full Text PDF

Oligodendrocyte dysfunction has been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder characterized by progressive motor neuron loss. The failure of trophic support provided by oligodendrocytes is associated with a concomitant reduction in oligodendroglial monocarboxylate transporter 1 (MCT1) expression and is detrimental for the long-term survival of motor neuron axons. Therefore, we established an adeno-associated virus 9 (AAV9)-based platform by which MCT1 was targeted mostly to white matter oligodendrocytes to investigate whether this approach could provide a therapeutic benefit in the SOD1 mouse model of ALS.

View Article and Find Full Text PDF

Background: The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease.

View Article and Find Full Text PDF

In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown.

View Article and Find Full Text PDF

While axons within the central nervous system (CNS) do not regenerate following injury, those in the peripheral nervous system (PNS) do, although not in a clinically satisfactory manner as only a small proportion of axons exhibit long-distance regeneration. Moreover, functional recovery is hampered by excessive axonal sprouting and aberrant reinnervation of target tissue. In order to investigate the mechanisms governing the regrowth of axons following injury, previous studies have used lesion paradigms of peripheral nerves in rat or mouse models, and reagents or cells have been administered to the lesion site through nerve conduits, aiming to improve early-stage regeneration.

View Article and Find Full Text PDF

In the brain, insulin plays an important role in cognitive processes. During aging, these faculties decline, as does insulin signaling. The mechanism behind this last phenomenon is unclear.

View Article and Find Full Text PDF

Most tumours have an aberrantly activated lipid metabolism that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism.

View Article and Find Full Text PDF

Background: Current mesoscale 3D imaging techniques are limited to transparent or cleared samples or require the use of X-rays. This is a severe limitation for many research areas, as the 3D color surface morphology of opaque samples-for example, intact adult Drosophila, Xenopus embryos, and other non-transparent samples-cannot be assessed. We have developed "ALMOST," a novel optical method for 3D surface imaging of reflective opaque objects utilizing an optical projection tomography device in combination with oblique illumination and optical filters.

View Article and Find Full Text PDF