Publications by authors named "Axel Wismuller"

We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic.

View Article and Find Full Text PDF

A key challenge to gaining insight into complex systems is inferring nonlinear causal directional relations from observational time-series data. Specifically, estimating causal relationships between interacting components in large systems with only short recordings over few temporal observations remains an important, yet unresolved problem. Here, we introduce large-scale nonlinear Granger causality (lsNGC) which facilitates conditional Granger causality between two multivariate time series conditioned on a large number of confounding time series with a small number of observations.

View Article and Find Full Text PDF

It is estimated that more than 50% of the individuals affected with Human Immunodeficiency Virus (HIV) present deficits in multiple cognitive domains, collectively known as HIV-associated neurocognitive disorder (HAND). Early stages of brain injury may be clinically silent but potentially measurable via neuroimaging. A total of 40 subjects (20 HIV positive and 20 age-matched controls) volunteered for the study.

View Article and Find Full Text PDF

Functional MRI (fMRI) quantifies brain activity non-invasively by measuring the blood oxygen level dependent (BOLD) response to neuronal activity. It was recently demonstrated, on realistic fMRI simulations, that nonlinear connectivity approaches, such as Mutual Connectivity Analysis with Local Models (MCA-LM), are better suited for extracting connectivity measures than conventional techniques of cross-correlating time-series pairs. In this work, we investigate the application of MCA-LM in extracting meaningful connectivity measures aiding in distinguishing healthy controls from individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND), which occurs as a result of HIV infection of the central nervous system.

View Article and Find Full Text PDF

HIV-associated neurocognitive disorders (HAND) represent an important source of neurologic complications in individuals with HIV. The dynamic, often subclinical, course of HAND has rendered diagnosis, which currently depends on neuropsychometric (NP) evaluation, a challenge for clinicians. Here, we present evidence that functional brain connectivity, derived by large-scale Granger causality (lsGC) analysis of resting-state functional MRI (rs-fMRI) time-series, represents a potential biomarker to address this critical diagnostic need.

View Article and Find Full Text PDF

Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND).

View Article and Find Full Text PDF

Functional connectivity analysis of functional MRI (fMRI) can represent brain networks and reveal insights into interactions amongst different brain regions. However, most connectivity analysis approaches adopted in practice are linear and non-directional. In this paper, we demonstrate the advantage of a data-driven, directed connectivity analysis approach called Mutual Connectivity Analysis using Local Models (MCA-LM) that approximates connectivity by modeling nonlinear dependencies of signal interaction, over more conventionally used approaches, such as Pearson's and partial correlation, Patel's conditional dependence measures, etcetera.

View Article and Find Full Text PDF

HIV is capable of invading the brain soon after seroconversion. This ultimately can lead to deficits in multiple cognitive domains commonly referred to as HIV-associated neurocognitive disorders (HAND). Clinical diagnosis of such deficits requires detailed neuropsychological assessment but clinical signs may be difficult to detect during asymptomatic injury of the central nervous system (CNS).

View Article and Find Full Text PDF

Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated to be effective for visualization of the human cartilage matrix at micrometer resolution, thereby capturing osteoarthritis induced changes to chondrocyte organization. This study aims to systematically assess the efficacy of deep transfer learning methods for classifying between healthy and diseased tissue patterns. We extracted features from two different convolutional neural network architectures, CaffeNet and Inception-v3 for characterizing such patterns.

View Article and Find Full Text PDF

Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or 'brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization.

View Article and Find Full Text PDF

Infection of the brain by the Human Immunodeficiency Virus (HIV) causes irreversible damage to the synaptic connections resulting in cognitive impairment. Patients with HIV infection, showing signs of impairment in multiple cognitive domains, as assessed by neuropsychological testing, are said to exhibit symptoms of HIV Associated Neurocognitive Disorder (HAND). In this study, we use resting-state functional MRI (fMRI) data to distinguish between healthy subjects and subjects with symptoms of HAND.

View Article and Find Full Text PDF

Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination occurring in the CNS can manifest as a change in neuronal metabolism, with multiple asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis techniques.

View Article and Find Full Text PDF

We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system.

View Article and Find Full Text PDF

Background: Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction.

New Method: We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data.

View Article and Find Full Text PDF

Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data.

View Article and Find Full Text PDF

We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks.

View Article and Find Full Text PDF

About 50% of subjects infected with HIV present deficits in cognitive domains, which are known collectively as HIV associated neurocognitive disorder (HAND). The underlying synaptodendritic damage can be captured using resting state functional MRI, as has been demonstrated by a few earlier studies. Such damage may induce topological changes of brain connectivity networks.

View Article and Find Full Text PDF

We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain.

View Article and Find Full Text PDF

The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom.

View Article and Find Full Text PDF

The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND).

View Article and Find Full Text PDF

Phase-contrast X-ray computed tomography (PCI-CT) has attracted significant interest in recent years for its ability to provide significantly improved image contrast in low absorbing materials such as soft biological tissue. In the research context of cartilage imaging, previous studies have demonstrated the ability of PCI-CT to visualize structural details of human patellar cartilage matrix and capture changes to chondrocyte organization induced by osteoarthritis. This study evaluates the use of geometrical and topological features for volumetric characterization of such chondrocyte patterns in the presence (or absence) of osteoarthritic damage.

View Article and Find Full Text PDF

Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to the output neurons alone thereby providing a computational advantage. We demonstrate the use of such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary motor cortex network associated with hand movement from resting state functional MRI (fMRI) data.

View Article and Find Full Text PDF

Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power.

View Article and Find Full Text PDF

We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method.

View Article and Find Full Text PDF

Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification.

View Article and Find Full Text PDF