Background: Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.
Objective: The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that allows the modulation of the excitability and plasticity of the human brain. Focalized tDCS setups use specific electrode arrangements to constrain the current flow to circumscribed brain regions. However, the effectiveness of focalized tDCS can be compromised by electrode positioning errors on the scalp, resulting in significant reductions of the current dose reaching the target brain regions for tDCS.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS.
View Article and Find Full Text PDFBackground: Transcranial evoked potentials (TEPs) measured via electroencephalography (EEG) are widely used to study the cortical responses to transcranial magnetic stimulation (TMS). Immediate transcranial evoked potentials (i-TEPs) have been obscured by pulse and muscular artifacts. Thus, the TEP peaks that are commonly reported have latencies that are too long to be caused by direct excitation of cortical neurons.
View Article and Find Full Text PDFObjective: Electrode positioning errors contribute to variability of transcranial direct current stimulation (tDCS) effects. We investigated the impact of electrode positioning errors on current flow for tDCS set-ups with different focality.
Methods: Deviations from planned electrode positions were determined using data acquired in an experimental study (N = 240 datasets) that administered conventional and focal tDCS during magnetic resonance imaging (MRI).
Tumor-treating fields (TTFields) are currently a Category 1A treatment recommendation by the US National Comprehensive Cancer Center for patients with newly diagnosed glioblastoma. Although the mechanism of action of TTFields has been partly elucidated, tangible and standardized metrics are lacking to assess antitumor dose and effects of the treatment. This paper outlines and evaluates the current standards and methodologies in the estimation of the TTFields distribution and dose measurement in the brain and highlights the most important principles governing TTFields dosimetry.
View Article and Find Full Text PDFBackground: Left prefrontal intermittent theta-burst stimulation (iTBS) has emerged as a safe and effective transcranial magnetic stimulation (TMS) treatment protocol in depression. Though network effects after iTBS have been widely studied, the deeper mechanistic understanding of target engagement is still at its beginning. Here, we investigate the feasibility of a novel integrated TMS-fMRI setup and accelerated echo planar imaging protocol to directly observe the immediate effects of full iTBS treatment sessions.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS.
View Article and Find Full Text PDFSynchronization between auditory stimuli and brain rhythms is beneficial for perception. In principle, auditory perception could be improved by facilitating neural entrainment to sounds via brain stimulation. However, high inter-individual variability of brain stimulation effects questions the usefulness of this approach.
View Article and Find Full Text PDFThe modeling of transcranial magnetic stimulation (TMS)-induced electric fields (E-fields) is a versatile technique for evaluating and refining brain targeting and dosing strategies, while also providing insights into dose-response relationships in the brain. This review outlines the methodologies employed to derive E-field estimations, covering TMS physics, modeling assumptions, and aspects of subject-specific head tissue and coil modeling. We also summarize various numerical methods for solving the E-field and their suitability for various applications.
View Article and Find Full Text PDFPurpose: In MRI, the magnetization of nuclear spins is spatially encoded with linear gradients and radiofrequency receivers sensitivity profiles to produce images, which inherently leads to a long scan time. Cartesian MRI, as widely adopted for clinical scans, can be accelerated with parallel imaging and rapid magnetic field modulation during signal readout. Here, by using an 8-channel local coil array, the modulation scheme optimized for sampling efficiency is investigated to speed up 2D Cartesian scans.
View Article and Find Full Text PDFNon-human primates (NHPs) have become key for translational research in noninvasive brain stimulation (NIBS). However, in order to create comparable stimulation conditions for humans it is vital to study the accuracy of current modeling practices across species. Numerical models to simulate electric fields are an important tool for experimental planning in NHPs and translation to human studies.
View Article and Find Full Text PDFGenerating realistic volume conductor models for forward calculations in electroencephalography (EEG) is not trivial and several factors contribute to the accuracy of such models, two of which are its anatomical accuracy and the accuracy with which electrode positions are known. Here, we investigate effects of anatomical accuracy by comparing forward solutions from SimNIBS, a tool which allows state-of-the-art anatomical modeling, with well-established pipelines in MNE-Python and FieldTrip. We also compare different ways of specifying electrode locations when digitized positions are not available such as transformation of measured positions from standard space and transformation of a manufacturer layout.
View Article and Find Full Text PDFPurpose: Clinical use of transcranial electrical stimulation (TES) requires accurate knowledge of the injected current distribution in the brain. MR current density imaging (MRCDI) uses measurements of the TES-induced magnetic fields to provide this information. However, sufficient sensitivity and image quality in humans in vivo has only been documented for single-slice imaging.
View Article and Find Full Text PDFTranscranial focused Ultrasound Stimulation (TUS) at low intensities is emerging as a novel non-invasive brain stimulation method with higher spatial resolution than established transcranial stimulation methods and the ability to selectively stimulate also deep brain areas. Accurate control of the focus position and strength of the TUS acoustic waves is important to enable a beneficial use of the high spatial resolution and to ensure safety. As the human skull causes strong attenuation and distortion of the waves, simulations of the transmitted waves are needed to accurately determine the TUS dose distribution inside the cranial cavity.
View Article and Find Full Text PDFBackground: Many patients do not fully regain motor function after ischemic stroke. Transcranial direct current stimulation (TDCS) targeting the motor cortex may improve motor outcome as an add-on intervention to physical rehabilitation. However, beneficial effects on motor function vary largely among patients within and across TDCS trials.
View Article and Find Full Text PDFDespite advances in data augmentation and transfer learning, convolutional neural networks (CNNs) difficultly generalise to unseen domains. When segmenting brain scans, CNNs are highly sensitive to changes in resolution and contrast: even within the same MRI modality, performance can decrease across datasets. Here we introduce SynthSeg, the first segmentation CNN robust against changes in contrast and resolution.
View Article and Find Full Text PDFWe describe a routine to precisely localize cortical muscle representations within the primary motor cortex with transcranial magnetic stimulation (TMS) based on the functional relation between induced electric fields at the cortical level and peripheral muscle activation (motor-evoked potentials; MEPs). Besides providing insights into structure-function relationships, this routine lays the foundation for TMS dosing metrics based on subject-specific cortical electric field thresholds. MEPs for different coil positions and orientations are combined with electric field modeling, exploiting the causal nature of neuronal activation to pinpoint the cortical origin of the MEPs.
View Article and Find Full Text PDF. Transcranial electrical stimulation (tES) is a promising method for modulating brain activity and excitability with variable results to date. To minimize electric (E-)field strength variability, we introduce the 2-sample prospective E-field dosing (2-SPED) approach, which uses E-field strengths induced by tES in a first population to individualize stimulation intensity in a second population.
View Article and Find Full Text PDFComputational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results.
View Article and Find Full Text PDFBackground And Objective: Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect.
View Article and Find Full Text PDFTumor treating fields (TTFields) is an anti-cancer technology increasingly used for the treatment of glioblastoma. Recently, cranial burr holes have been used experimentally to enhance the intensity (dose) of TTFields in the underlying tumor region. In the present study, we used computational finite element methods to systematically characterize the impact of the burr hole position and the TTFields transducer array layout on the TTFields distribution calculated in a realistic human head model.
View Article and Find Full Text PDFTranscranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization.
View Article and Find Full Text PDF