Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot.
View Article and Find Full Text PDFThe Ames mutagenicity test constitutes the most frequently used assay to estimate the mutagenic potential of drug candidates. While this test employs experimental results using various strains of , the vast majority of the published in silico models for predicting mutagenicity do not take into account the test results of the individual experiments conducted for each strain. Instead, such QSAR models are generally trained employing overall labels (i.
View Article and Find Full Text PDFThe COVID-19 pandemic resulted in an unprecedented production of scientific literature spanning several fields. To facilitate navigation of the scientific literature related to various aspects of the pandemic, we developed an exploratory search system. The system is based on automatically identified technical terms, document citations, and their visualization, accelerating identification of relevant documents.
View Article and Find Full Text PDFWith the consolidation of deep learning in drug discovery, several novel algorithms for learning molecular representations have been proposed. Despite the interest of the community in developing new methods for learning molecular embeddings and their theoretical benefits, comparing molecular embeddings with each other and with traditional representations is not straightforward, which in turn hinders the process of choosing a suitable representation for Quantitative Structure-Activity Relationship (QSAR) modeling. A reason behind this issue is the difficulty of conducting a fair and thorough comparison of the different existing embedding approaches, which requires numerous experiments on various datasets and training scenarios.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2021
In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations.
View Article and Find Full Text PDFSummary: Although the publication rate of the biomedical literature has been growing steadily during the last decades, the accessibility of pertinent research publications for biologist and medical practitioners remains a challenge. This article describes Thalia, which is a semantic search engine that can recognize eight different types of concepts occurring in biomedical abstracts. Thalia is available via a web-based interface or a RESTful API.
View Article and Find Full Text PDFMotivation: Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support.
View Article and Find Full Text PDFThe increasing growth of literature in biodiversity presents challenges to users who need to discover pertinent information in an efficient and timely manner. In response, text mining techniques offer solutions by facilitating the automated discovery of knowledge from large textual data. An important step in text mining is the recognition of concepts via their linguistic realisation, i.
View Article and Find Full Text PDFLiquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS) is widely used in proteomic and metabolomic workflows. Considerable analytical improvements have been observed when the components of LC systems are scaled down. Currently, nano-ESI is typically done at capillary LC flow rates ranging from 200 to 300 nL/min.
View Article and Find Full Text PDFBackground: The design of QSAR/QSPR models is a challenging problem, where the selection of the most relevant descriptors constitutes a key step of the process. Several feature selection methods that address this step are concentrated on statistical associations among descriptors and target properties, whereas the chemical knowledge is left out of the analysis. For this reason, the interpretability and generality of the QSAR/QSPR models obtained by these feature selection methods are drastically affected.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) are contained in a variety of chemicals that can be found in household products and may have undesirable effects on health. Thereby, it is important to model blood-to-liver partition coefficients (log P(liver)) for VOCs in a fast and inexpensive way. In this paper, we present two new quantitative structure-property relationship (QSPR) models for the prediction of log P(liver), where we also propose a hybrid approach for the selection of the descriptors.
View Article and Find Full Text PDFThis work describes a methodology for assisting virtual screening of drugs during the early stages of the drug development process. This methodology is proposed to improve the reliability of in silico property prediction and it is structured in two steps. Firstly, a transformation is sought for mapping a high-dimensional space defined by potentially redundant or irrelevant molecular descriptors into a low-dimensional application-related space.
View Article and Find Full Text PDF