Publications by authors named "Axel Hemberg"

This study investigates the simultaneous decoration of vertically aligned molybdenum disulfide nanostructure (VA-MoS) with Ag nanoparticles (NPs) and nitrogen functionalization. Nitrogen functionalization was achieved through physical vapor deposition (PVD) DC-magnetron sputtering using nitrogen as a reactive gas, aiming to induce p-type behavior in MoS. The utilization of reactive sputtering resulted in the growth of three-dimensional silver structures on the surface of MoS, promoting the formation of silver nanoparticles.

View Article and Find Full Text PDF

The impact of different synthesis parameters, such as thickness, postsynthesis annealing temperature, and oxygen gas flow rate, upon the electronic structure is discussed in detail in the present experimental investigation. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectroscopy techniques are used to evaluate the surface electronic properties along with the presence and stability of the CdO surface oxide in CdZnO ( = 0.4) composite thin films.

View Article and Find Full Text PDF

Medical implants have improved the quality of life of many patients. However, surgical intervention may eventually lead to implant microbial contamination. The aims of this research were to develop an easy, robust, quantitative assay to assess surface antimicrobial activities, especially the anti-nascent biofilm activity, and to identify control surfaces, allowing for international comparisons.

View Article and Find Full Text PDF

The present study aims to improve the interfacial bonding between hydroxyapatite particles (HAs) and polylactide (PLA) to enhance the mechanical performance and biocompatibility of bone implants based on HA/PLA. For this, one-shot surface functionalization of HA via plasma polymerization is developed. Taking advantage of acetylene plasma chemistry, the hydrophobicity of HA particles was finely tuned prior to their introduction into a PLA matrix via an extrusion process.

View Article and Find Full Text PDF

Nowadays, the development of synthetic methods regarding the fabrication of -SH containing organic coatings continues to attract a considerable attention. Among the potential techniques, the plasma polymerization appears as one of the most promising method but the difficulty to control the chemical composition of the layers is highly limiting. In this context, in this work, we report on an original method combining dry and wet chemistry approaches in view of selectively incorporating -SH functions in organic coatings.

View Article and Find Full Text PDF

Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5.

View Article and Find Full Text PDF