Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America.
View Article and Find Full Text PDFGrasshoppers represent a significant biological challenge in Inner Mongolia's grasslands, severely affecting the region's animal husbandry. Thus, dynamic monitoring of grasshopper infestation risk is crucial for sustainable livestock farming. This study employed the Maxent model, along with remote sensing data, to forecast Oedaleus decorus asiaticus occurrence during the growing season, using grasshopper suitability habitats as a base.
View Article and Find Full Text PDFWeather conditions regulate the growth and yield of crops, especially in rain-fed agricultural systems. This study evaluated the use and relative importance of readily available weather data to develop yield estimation models for maize and soybean in the US central Corn Belt. Total rainfall (Rain), average air temperature (Tavg), and the difference between maximum and minimum air temperature (Tdiff) at weekly, biweekly, and monthly timescales from May to August were used to estimate county-level maize and soybean grain yields for Iowa, Illinois, Indiana, and Minnesota.
View Article and Find Full Text PDFThe incorporation of cover crops into the maize (Zea mays L.)-soybean [Glycine max (L.) Merr.
View Article and Find Full Text PDFBrazilian off-season maize production is characterized by low yield due to several factors, such as climate variability and inadequate management practices, specifically weed management. Thus, the goal of this study was to determinate the critical period of weed competition in off-season maize (Zea mays L.) crop using thermal units or growing degree days (GDD) approach to characterize crop growth and development.
View Article and Find Full Text PDF