Multiway- or tensor-based decoding techniques for brain-computer interfaces (BCIs) are believed to better account for the multilinear structure of brain signals than conventional vector- or matrix-based ones. However, despite their outlook on significant performance gains, the used parameter optimization approach is often too computationally demanding so that conventional techniques are still preferred. We propose two novel tensor factorizations which we integrate into our block-term tensor regression (BTTR) algorithm and further introduce a marginalization procedure that guarantees robust predictions while reducing the risk of overfitting (generalized regression).
View Article and Find Full Text PDF