Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection.
View Article and Find Full Text PDFSymbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga.
View Article and Find Full Text PDFDuring starvation in the yeast vacuolar vesicles fuse and lipid droplets (LDs) can become internalized into the vacuole in an autophagic process named lipophagy. There is a lack of tools to quantitatively assess starvation-induced vacuole fusion and lipophagy in intact cells with high resolution and throughput. Here, we combine soft X-ray tomography (SXT) with fluorescence microscopy and use a deep-learning computational approach to visualize and quantify these processes in yeast.
View Article and Find Full Text PDFModels of insulin secretory vesicles from pancreatic beta cells have been created using the cellPACK suite of tools to research, curate, construct and visualise the current state of knowledge. The model integrates experimental information from proteomics, structural biology, cryoelectron microscopy and X-ray tomography, and is used to generate models of mature and immature vesicles. A new method was developed to generate a confidence score that reconciles inconsistencies between three available proteomes using expert annotations of cellular localisation.
View Article and Find Full Text PDFInsulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets.
View Article and Find Full Text PDFPositively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides.
View Article and Find Full Text PDFUpon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed.
View Article and Find Full Text PDFDeveloping in silico models that accurately reflect a whole, functional cell is an ongoing challenge in biology. Current efforts bring together mathematical models, probabilistic models, visual representations, and data to create a multi-scale description of cellular processes. A realistic whole-cell model requires imaging data since it provides spatial constraints and other critical cellular characteristics that are still impossible to obtain by calculation alone.
View Article and Find Full Text PDFInvestigating the 3D structures and rearrangements of organelles within a single cell is critical for better characterizing cellular function. Imaging approaches such as soft X-ray tomography have been widely applied to reveal a complex subcellular organization involving multiple inter-organelle interactions. However, 3D segmentation of organelle instances has been challenging despite its importance in organelle characterization.
View Article and Find Full Text PDFThe protocol describes step-by-step sample preparation, data acquisition, and segmentation of cellular organelles with soft X-ray tomography. It is designed for microscopes built to perform full-rotation data acquisition on specimens in cylindrical sample holders, such as the XM-2 microscope at the Advanced Light Source, LBNL; however, it might be generalized for similar sample holder designs for both synchrotron and table-top microscopes. For complete details on the use and execution of this profile, please refer to Loconte et al.
View Article and Find Full Text PDFInter-organelle interactions are a vital part of normal cellular function; however, these have proven difficult to quantify due to the range of scales encountered in cell biology and the throughput limitations of traditional imaging approaches. Here, we demonstrate that soft X-ray tomography (SXT) can be used to rapidly map ultrastructural reorganization and inter-organelle interactions in intact cells. SXT takes advantage of the naturally occurring, differential X-ray absorption of the carbon-rich compounds in each organelle.
View Article and Find Full Text PDFHigh-resolution and rapid imaging of host cell ultrastructure can generate insights toward viral disease mechanism, for example for a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Here, we employ full-rotation soft X-ray tomography (SXT) to examine organelle remodeling induced by SARS-CoV-2 at the whole-cell level with high spatial resolution and throughput. Most of the current SXT systems suffer from a restricted field of view due to use of flat sample supports and artifacts due to missing data.
View Article and Find Full Text PDFA reconstruction algorithm for partially coherent x-ray computed tomography (XCT) including Fresnel diffraction is developed and applied to an optical fiber. The algorithm is applicable to a high-resolution tube-based laboratory-scale x-ray tomography instrument. The computing time is only a few times longer than the projective counterpart.
View Article and Find Full Text PDFCharacterizing relationships between cell structures and functions requires mesoscale mapping of intact cells showing subcellular rearrangements following stimulation; however, current approaches are limited in this regard. Here, we report a unique application of soft x-ray tomography to generate three-dimensional reconstructions of whole pancreatic β cells at different time points following glucose-stimulated insulin secretion. Reconstructions following stimulation showed distinct insulin vesicle distribution patterns reflective of altered vesicle pool sizes as they travel through the secretory pathway.
View Article and Find Full Text PDFMitochondria are dynamic organelles that change morphology to adapt to cellular energetic demands under both physiological and stress conditions. Cardiomyopathies and neuronal disorders are associated with structure-related dysfunction in mitochondria, but three-dimensional characterizations of the organelles are still lacking. In this study, we combined high-resolution imaging and 3D electron density information provided by cryo-soft X-ray tomography to characterize mitochondria cristae morphology isolated from murine.
View Article and Find Full Text PDFBacterial nucleoid remodeling dependent on conserved histone-like protein, HU is one of the determining factors in global gene regulation. By imaging of near-native, unlabeled E. coli cells by soft X-ray tomography, we show that HU remodels nucleoids by promoting the formation of a dense condensed core surrounded by less condensed isolated domains.
View Article and Find Full Text PDFThe diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures.
View Article and Find Full Text PDFDuring lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope.
View Article and Find Full Text PDFMorphometric measurements, such as quantifying cell shape, characterizing sub-cellular organization, and probing cell-cell interactions, are fundamental in cell biology and clinical medicine. Until quite recently, the main source of morphometric data on cells has been light- and electron-based microscope images. However, many technological advances have propelled X-ray microscopy into becoming another source of high-quality morphometric information.
View Article and Find Full Text PDFIn this article, we introduce a linear approximation of the forward model of soft X-ray tomography, such that the reconstruction is solvable by standard iterative schemes. This linear model takes into account the three-dimensional point spread function (PSF) of the optical system, which consequently enhances the reconstruction of data. The feasibility of the model is demonstrated on both simulated and experimental data, based on theoretically estimated and experimentally measured PSFs.
View Article and Find Full Text PDFIn the context of cell biology, the term mesoscale describes length scales ranging from that of an individual cell, down to the size of the molecular machines. In this spatial regime, small building blocks self-organise to form large, functional structures. A comprehensive set of rules governing mesoscale self-organisation has not been established, making the prediction of many cell behaviours difficult, if not impossible.
View Article and Find Full Text PDFRecent developments in making fibre materials using the foam-forming technology have raised a need to characterize the porous structure at low material density. In order to find an effective choice among all structure-characterization methods, both two-dimensional and three-dimensional techniques were used to explore the porous structure of foam-formed samples made with two different types of cellulose fibre. These techniques included X-ray microtomography, scanning electron microscopy, light microscopy, direct surface imaging using a CCD camera and mercury intrusion porosimetry.
View Article and Find Full Text PDF