Soil monitoring requires accurate and spatially explicit information on soil organic carbon (SOC) trends and changes over time. Spatiotemporal SOC models based on Earth Observation (EO) satellite data can support large-scale SOC monitoring but often lack sufficient temporal validation based on long-term soil data. In this study, we used repeated SOC samples from 1986 to 2022 and a time series of multispectral bare soil observations (Landsat and Sentinel-2) to model high-resolution cropland SOC trends for almost four decades.
View Article and Find Full Text PDFSoil organic carbon (SOC) accrual, and particularly the formation of fine fraction carbon (OC), has a large potential to act as sink for atmospheric CO. For reliable estimates of this potential and efficient policy advice, the major limiting factors for OC accrual need to be understood. The upper boundary of the correlation between fine mineral particles (silt + clay) and OC is widely used to estimate the maximum mineralogical capacity of soils to store OC, suggesting that mineral surfaces get C saturated.
View Article and Find Full Text PDFConverting natural vegetation for agriculture has resulted in the loss of approximately 5% of the current global terrestrial soil organic carbon (SOC) stock to the atmosphere. Increasing the agricultural area under grassland may reverse some of these losses, but the effectiveness of such a strategy is limited by how quickly SOC recovers after conversion from cropland. Using soil data and extensive land-use histories gathered during the national German agricultural soil inventory, this study aims to answer three questions regarding agricultural land-use change (LUC): (i) how do SOC stocks change with depth following LUC; (ii) how long does it take to reach SOC equilibrium after LUC; and (iii) what is the legacy effect of historic LUC on present day SOC dynamics? By using a novel approach that substitutes space for time and accounts for differences in site properties using propensity score balancing, we determined that sites that were converted from cropland to grassland reached a SOC equilibrium level 47.
View Article and Find Full Text PDFThe term carbon (C) sequestration has not just become a buzzword but is something of a siren's call to scientific communicators and media outlets. Carbon sequestration is the removal of C from the atmosphere and the storage, for example, in soil. It has the potential to partially compensate for anthropogenic greenhouse gas emissions and is, therefore, an important piece in the global climate change mitigation puzzle.
View Article and Find Full Text PDFIn this response to a letter to the editor, we provide evidence that the findings regarding a non-detectable limit of mineral-associated organic carbon as published in Begill et al. (2023) are robust. This is mainly done by showing that no methodological bias was present and that the main correlation was not driven by a few exceptional soils.
View Article and Find Full Text PDFSoil organic carbon (SOC) sequestration is a promising climate change mitigation option. In this context, the formation of the relatively long-lived mineral-associated organic carbon (MAOC) is key. To date, soils are considered to be limited in their ability to accumulate MAOC, mainly by the amount of clay and silt particles present.
View Article and Find Full Text PDFIncreasing soil organic carbon (SOC) stocks in agricultural soils removes carbon dioxide from the atmosphere and contributes towards achieving carbon neutrality. For farmers, higher SOC levels have multiple benefits, including increased soil fertility and resilience against drought-related yield losses. However, increasing SOC levels requires agricultural management changes that are associated with costs.
View Article and Find Full Text PDFTreatment effects are traditionally quantified in controlled experiments. However, experimental control is often achieved at the expense of representativeness. Here, we present a data-driven reciprocal modelling framework to quantify the individual effects of environmental treatments under field conditions.
View Article and Find Full Text PDFThe ratio of soil organic carbon stock (SOC) to annual carbon input gives an estimate of the mean residence time of organic carbon that enters the soil (MRT ). It indicates how efficiently biomass can be transformed into SOC, which is of particular relevance for mitigating climate change by means of SOC storage. There have been few comprehensive studies of MRT and their drivers, and these have mainly been restricted to the global scale, on which climatic drivers dominate.
View Article and Find Full Text PDFThis study evaluates the dynamics of soil organic carbon (SOC) under perennial crops across the globe. It quantifies the effect of change from annual to perennial crops and the subsequent temporal changes in SOC stocks during the perennial crop cycle. It also presents an empirical model to estimate changes in the SOC content under crops as a function of time, land use, and site characteristics.
View Article and Find Full Text PDFSequestration of soil organic carbon (SOC) has been recognized as an opportunity to off-set global carbon dioxide (CO ) emissions. Flipping (full inversion to 1-3 m) is a practice used on New Zealand's South Island West Coast to eliminate water-logging in highly podzolized sandy soils. Flipping results in burial of SOC formed in surface soil horizons into the subsoil and the transfer of subsoil material low in SOC to the "new" topsoil.
View Article and Find Full Text PDFAs the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models.
View Article and Find Full Text PDFLand-use and their change have dramatic consequences for above-ground biodiversity, but their impact on soil microbial communities is poorly understood. In this study, soils from 19 European sites representing conversion of croplands to grasslands or forests and of grasslands to croplands or forests were characterized for microbial abundance and bacterial diversity. The abundance of Bacteria and Fungi but not Archaea responded to land-use change.
View Article and Find Full Text PDFAccumulation of soil organic carbon (SOC) may play a key role in climate change mitigation and adaptation. In particular, subsoil provides a great potential for additional SOC storage due to the assumed higher stability of subsoil SOC. The fastest way in which SOC reaches the subsoil is via burial, e.
View Article and Find Full Text PDFIn the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability.
View Article and Find Full Text PDFSubsoils play an important role within the global C cycle, since they have high soil organic carbon (SOC) storage capacity due to generally low SOC concentrations. However, measures for enhancing SOC storage commonly focus on topsoils. This study assessed the long-term storage and stability of SOC in topsoils buried in arable subsoils by deep ploughing, a globally applied method for breaking up hard pans and improving soil structure to optimize crop growing conditions.
View Article and Find Full Text PDFBiomass carbonized via hydrothermal carbonization (HTC) yields a liquid and a carbon (C)-rich solid called hydrochar. In soil, hydrochars may act as fertilizers and promote C sequestration. We assumed that the chemical composition of the raw material (woodchips, straw, grass cuttings, or digestate) determines the properties of the liquid and solid HTC products, including their degradability.
View Article and Find Full Text PDFMore than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling.
View Article and Find Full Text PDF