In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy.
View Article and Find Full Text PDFBax cytosol-to-mitochondria translocation is a central event of the intrinsic pathway of apoptosis. Bcl-xL is an important regulator of this event and was recently shown to promote the retrotranslocation of mitochondrial Bax to the cytosol. The present study identifies a new aspect of the regulation of Bax localization by Bcl-xL: in addition to its role in Bax inhibition and retrotranslocation, we found that, like with Bcl-2, an increase of Bcl-xL expression levels led to an increase of Bax mitochondrial content.
View Article and Find Full Text PDFThe bioeffects of exposure to Wireless High-Fidelity (WiFi) signals on the developing nervous systems of young rodents was investigated by assessing the in vivo and in situ expression levels of three stress markers: 3-Nitrotyrosine (3-NT), an oxidative stress marker and two heat-shock proteins (Hsp25 and Hsp70). These biomarkers were measured in the brains of young rats exposed to a 2450 MHz WiFi signal by immunohistochemistry. Pregnant rats were first exposed or sham exposed to WiFi from day 6 to day 21 of gestation.
View Article and Find Full Text PDFCalmodulin-dependent kinase II (CaMKII) is key for long-term potentiation of synaptic AMPA receptors. Whether CaMKII is involved in activity-dependent plasticity of other ionotropic glutamate receptors is unknown. We show that repeated pairing of pre- and postsynaptic stimulation at hippocampal mossy fibre synapses induces long-term depression of kainate receptor (KAR)-mediated responses, which depends on Ca(2+) influx, activation of CaMKII, and on the GluK5 subunit of KARs.
View Article and Find Full Text PDFKainate receptors (KARs) play a key role in the regulation of synaptic networks. Here, we show that zinc, a cation released at a subset of glutamatergic synapses, potentiates glutamate currents mediated by homomeric and heteromeric KARs containing GluK3 at 10-100 μM concentrations, whereas it inhibits other KAR subtypes. Potentiation of GluK3 currents is mainly due to reduced desensitization, as shown by kinetic analysis and desensitization mutants.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
April 2012
Background: The increase in exposure to the Wireless Fidelity (Wi-Fi) wireless communication signal has raised public health concerns especially for young people. Animal studies looking at the effects of early life and prenatal exposure to this source of electromagnetic fields, in the radiofrequency (RF) range, on development and behavior have been considered as high priority research needs by the World Health Organization.
Methods: For the first time, our study assessed the effects of in utero exposure to a 2450 MHz Wi-Fi signal (2 hr/day, 6 days/week for 18 days) on pregnant rats and their pups.
An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.
View Article and Find Full Text PDF