Abstract: the distinct localization of membrane proteins with regard to cell polarity is crucial for the structure and function of various organs in multicellular organisms. However, the molecules and mechanisms that regulate protein localization to particular subcellular domains are still largely unknown. To identify the genes involved in regulation of protein localization, the authors performed a large-scale screen using a Drosophila RNA interference (RNAi) library, by which Drosophila genes could be knocked down in a tissue- and stage-specific manner.
View Article and Find Full Text PDFThe Golgi apparatus is an intracellular organelle playing central roles in post-translational modification and in the secretion of membrane and secretory proteins. These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the cis-, medial-and trans-cisternae of the Golgi. While trafficking through the Golgi, proteins are sequentially modified with glycan moieties by different glycosyltransferases.
View Article and Find Full Text PDFGlycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated.
View Article and Find Full Text PDFRecent studies have demonstrated protective roles for autophagy in various neurodegenerative disorders, including the polyglutamine diseases; however, the role of autophagy in retinal degeneration has remained unclear. Accumulation of activated rhodopsin in some Drosophila mutants leads to retinal degeneration, and although it is known that activated rhodopsin is degraded in endosomal pathways in normal photoreceptor cells, the contribution of autophagy to rhodopsin regulation has remained elusive. This study reveals that activated rhodopsin is degraded by autophagy in collaboration with endosomal pathways to prevent retinal degeneration.
View Article and Find Full Text PDFWingless (Wg)/Wnt has been proposed to exert various functions as a morphogen depending on the levels of its signalling. Therefore, not just the concentration of Wg/Wnt, but also the responsiveness of Wg/Wnt-target cells to the ligand, must have a crucial function in controlling cellular outputs. Here, we show that a balance of ubiquitylation and deubiquitylation of the Wg/Wnt receptor Frizzled determines the cellular responsiveness to Wg/Wnt both in mammalian cells and in Drosophila, and that the cell surface level of Frizzled is regulated by deubiquitylating enzyme UBPY/ubiquitin-specific protease 8 (USP8).
View Article and Find Full Text PDFThe class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis.
View Article and Find Full Text PDFTemperature affects the physiology, behavior, and evolution of organisms. We conducted mutagenesis and screens for mutants with altered temperature preference in Drosophila melanogaster and identified a cryophilic (cold-seeking) mutant, named atsugari (atu). Reduced expression of the Drosophila ortholog of dystroglycan (DmDG) induced tolerance to cold as well as preference for the low temperature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2005
A striking variety of glycosylation occur in the Golgi complex in a protein-specific manner, but how this diversity and specificity are achieved remains unclear. Here we show that stacked fragments (units) of the Golgi complex dispersed in Drosophila imaginal disk cells are functionally diverse. The UDP-sugar transporter FRINGE-CONNECTION (FRC) is localized to a subset of the Golgi units distinct from those harboring SULFATELESS (SFL), which modifies glucosaminoglycans (GAGs), and from those harboring the protease RHOMBOID (RHO), which processes the glycoprotein SPITZ (SPI).
View Article and Find Full Text PDFMutations in the ken and barbie locus are accompanied by the malformation of terminalia in adult Drosophila. Male and female genitalia often remain inside the body, and the same portions of genitalia and analia are missing in a fraction of homozygous flies. Rotated and/or duplicated terminalia are also observed.
View Article and Find Full Text PDFIn an effort to uncover genetic components underlying the courtship behavior of Drosophila melanogaster, we have characterized a novel gene, lingerer (lig), mutations of which result in abnormal copulation. Males carrying a hypomorphic mutation in lig fail to withdraw their genitalia upon termination of copulation, but display no overt abnormalities in their genitalia. A severe reduction in the dosage of the lig gene causes repeated attempted copulations but no successful copulations.
View Article and Find Full Text PDFMutations in the spin gene are characterized by an extraordinarily strong rejection behavior of female flies in response to male courtship. They are also accompanied by decreases in the viability, adult life span, and oviposition rate of the flies. In spin mutants, some oocytes and adult neural cells undergo degeneration, which is preceded by reductions in programmed cell death of nurse cells in ovaries and of neurons in the pupal nervous system, respectively.
View Article and Find Full Text PDFA gene-trap system is established for Drosophila. Unlike the conventional enhancer-trap system, the gene-trap system allows the recovery only of fly lines whose genes are inactivated by a P-element insertion, i.e.
View Article and Find Full Text PDFThe Drosophila fruitless (fru) gene product Fru has been postulated to be a neural sex-determination factor that directs the development of at least two male-specific characteristics, namely courtship behaviour and formation of the muscle of Lawrence (MOL). The fru gene encodes a putative transcription factor with a BTB domain and two zinc-finger motifs, and with consensus Tra-binding sequences. The binding of Tra to these sequences results in sex-specific alternative splicing of the fru mRNA, leading to production of the 'male-type' or 'female-type' Fru protein.
View Article and Find Full Text PDFBisexual courtship in male Drosophila melanogaster may be induced in some circumstances. These include ectopic expression of the transformer (tra) gene, ectopic expression of the mini-white (mw) gene, and the homozygous presence of mutant alleles of the fruitless (fru) gene. Experiments were performed to determine if ectopic mw and fru, as well as ectopic tra and fru, acted in the same pathway to control courtship.
View Article and Find Full Text PDFWe cloned and sequenced genomic DNA contigs spanning over 45 kb, surrounding the insertion site of the P-element that is responsible for the developmental defects in the ken and barbie (ken) mutant of Drosophila. This region harbors 10 functional transcription units, in addition to the already well-characterized TGFbeta-60A gene. These include the genes, undefined 1 (UD1), UD2, and UD3, each coding for proteins of unknown function, the ken gene encoding a new Krüppel-like putative transcription factor, the fly homologues of the mammalian mitochondrial trifunctional enzyme (thiolase), and the TAR DNA-binding protein-43 (TBPH), the first nonvertebrate member of the transmembrane 4 superfamily (TM4SF) gene, a new homeodomain gene, and a gene coding for a putative nuclear binding protein (PNBP) that is homologous to maleless, and a Copia-like element.
View Article and Find Full Text PDFThe mushroom body (MB) is an important centre for higher order sensory integration and learning in insects. To analyse the development and organisation of the MB neuropile in Drosophila, we performed cell lineage analysis in the adult brain with a new technique that combines the Flippase (flp)/FRT system and the GAL4/UAS system. We showed that the four mushroom body neuroblasts (MBNbs) give birth exclusively to the neurones and glial cells of the MB, and that each of the four MBNb clones contributes to the entire MB structure.
View Article and Find Full Text PDF