In the rapidly evolving landscape of nanomedicine, aptamers have emerged as powerful molecular tools, demonstrating immense potential in targeted therapeutics, diagnostics, and drug delivery systems. This paper explores the computational features of aptamers in nanomedicine, highlighting their advantages over antibodies, including selectivity, low immunogenicity, and a simple production process. A comprehensive overview of the aptamer development process, specifically the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, sheds light on the intricate methodologies behind aptamer selection.
View Article and Find Full Text PDFNovel Carbon quantum dots-graphite composite ink-based Screen-printed electrodes (CQDs/SPEs) were used to assemble a highly sensitive electrochemical aptasensor against chlorpyrifos (CPF). The aptasensor showed a broad linear range from 1 pM (0.445 ng/ml) to 500 nM (0.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET)-based biosensors are being fabricated for specific detection of biomolecules or changes in the microenvironment. FRET is a non-radiative transfer of energy from an excited donor fluorophore molecule to a nearby acceptor fluorophore molecule. In a FRET-based biosensor, the donor and acceptor molecules are typically fluorescent proteins or fluorescent nanomaterials such as quantum dots (QDs) or small molecules that are engineered to be in close proximity to each other.
View Article and Find Full Text PDFDiabetes mellitus is one of the foremost global concerns, as it has impacted millions of lives. Therefore, there is an urgent need to develop a technology for continuous glucose monitoring in vivo. In the current study, we employed computational methods such as docking, MD simulations, and MM/GBSA, to obtain molecular insights into the interaction between (ZnO) nanocluster and glucose oxidase (GOx) that cannot be obtained through experiments alone.
View Article and Find Full Text PDFMetabolites are the intermediatory products of metabolic processes catalyzed by numerous enzymes found inside the cells. Detecting clinically relevant metabolites is important to understand their physiological and biological functions along with the evolving medical diagnostics. Rapid advances in detecting the tiny metabolites such as biomarkers that signify disease hallmarks have an immense need for high-performance identifying techniques.
View Article and Find Full Text PDF