Publications by authors named "Awadhesh Kumar Tripathi"

The present research was conducted to study the potential of cotton for the remediation of soils contaminated with Cd, to understand the biochemical basis of its tolerance to, and to investigate the plant-microbe interaction in the rhizosphere for enhancement of phytoextraction of Cd. Cotton (Bt RCH-2) was exposed to four Cd levels (0, 50, 100, and 200 mg/kg soil) in a completely randomised design and found that the plant could tolerate up to 200 mg/kg soil. Cd stress increased the total phenol, proline, and free amino acid contents in the plant leaf tissue compared with control but inhibited basal soil respiration, fluorescein diacetate hydrolysis, and activities of several enzymes viz.

View Article and Find Full Text PDF

Open field burning of crop residue causes severe air pollution and greenhouse gas emission contributing to global warming. In order to seek an alternative, the current study was initiated to explore the prospective of lignocellulolytic microbes to expedite in situ decomposition of crop residues. Field trials on farmers' field were conducted in the state of Haryana and Maharashtra, to target the burning of rice and wheat residue and sugarcane trash, respectively.

View Article and Find Full Text PDF

Two experiments were conducted to determine the cotton plant's tolerance to Pb and its remediation potential. In the first experiment, the phytoremediation potential was determined by exposing the plant to four levels of Pb (0, 500, 750, and 1000 mg kg). The cotton plant exhibited an excellent tolerance index at Pb 1000 mg kg (root 78.

View Article and Find Full Text PDF

In the present study, we evaluated Furcraea foetida for the phytoremediation of cadmium (Cd)-contaminated soils. We selected F. foetida because it is a drought-resistant plant, produces high biomass, and needs minimum maintenance.

View Article and Find Full Text PDF