The striking feature of the ubiquitous protein EfTu (Thermo unstable ribosomal Elongation factor) is its moonlighting (multifunctional) activity. Beyond its function at the ribosomal level it should be exported to the bacterial surface and act as an environmental sensor. In Bacillus cereus, and other cutaneous bacteria, it serves as a Substance P (SP) receptor and is essential for bacterial adaptation to the host.
View Article and Find Full Text PDFBackground: , generally considered as a saprophytic bowel commensal, has recently emerged as an important nosocomial pathogen causing severe urinary tract infections, surgical wound infections, bacteremia, and bacterial endocarditis. This bacterium is capable of forming biofilms on various surfaces and its high level of antibiotic resistance contributes to its pathogenicity. The aim of this study was to evaluate the effect on of Substance P (SP), an antimicrobial peptide that is produced in the gut and skin.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2017
Neurohormones diffuse in sweat and epidermis leading skin bacterial microflora to be largely exposed to these host factors. Bacteria can sense a multitude of neurohormones, but their role in skin homeostasis was only investigated recently. The first study focused on substance P (SP), a neuropeptide produced in abundance by skin nerve terminals.
View Article and Find Full Text PDFStaphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (<10M) whereas Staphylococcus aureus was insensitive to CGRP.
View Article and Find Full Text PDFStaphylococcus aureus and Staphylococcus epidermidis are two major skin associated bacteria, and Substance P (SP) is a major skin neuropeptide. Since bacteria are known to sense and response to many human hormones, we investigated the effects of SP on Staphylococci virulence in reconstructed human epidermis model and HaCaT keratinocytes. We show that SP is stimulating the virulence of S.
View Article and Find Full Text PDF