Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood.
View Article and Find Full Text PDFCilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood.
View Article and Find Full Text PDFCilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs).
View Article and Find Full Text PDFHER2 receptor tyrosine kinase (encoded by the ERBB2 gene) is overexpressed in approximately 25% of all breast cancer tumors (HER2-positive breast cancers). Resistance to HER2-targeting therapies is partially due to the loss of HER2 expression in tumor cells during treatment. However, little is known about the exact mechanism of HER2 downregulation in HER2-positive tumor cells.
View Article and Find Full Text PDFBackground: Hypertension has been identified as the most common comorbidity in coronavirus disease 2019 (COVID-19) patients, and has been suggested as a risk factor for COVID-19 disease outcomes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host human cells via binding to host cell angiotensin-converting enzyme 2 (ACE2) receptors. Inhibition of ACE2 has been proposed as a potential therapeutic approach to block SARS-CoV-2 contagion.
View Article and Find Full Text PDFViscoelasticity of collagen is essential for the integrity of connective tissue and its aberrancy may result in collagen dysfunction and the emergence of connective tissue diseases. Precise identification of viscoelastic properties of collagens, and affecting factors are necessary to understand collagen behavior in the extracellular matrix as well as the mechanism of collagen-related diseases. The aim of this study is to investigate the mechanical and viscoelastic properties and time-lapse changes of protein-protein and protein-solvent hydrogen bonds of proline-rich and hydroxyproline-rich collagens by molecular dynamics simulation applying a virtual creep test.
View Article and Find Full Text PDFIdentity of the amino acids in Gly-X-Y repetitive motives governs biomechanical features of collagen such as elasticity in the extracellular matrix. Proline and hydroxyproline are the most abundant residues at the X and Y sites of collagen repetitive motives, respectively. However, their effects on the elasticity of collagen have not been identified.
View Article and Find Full Text PDF