Publications by authors named "Avraham N"

Most superconductors have an isotropic, single component order parameter and are well described by the standard (BCS) theory for superconductivity. Unconventional, multiple-component superconductors are exceptionally rare and are much less understood. Here, we combine scanning tunneling microscopy and angle-resolved macroscopic transport for studying the candidate chiral superconductor, 4Hb-TaS.

View Article and Find Full Text PDF

Coupling together distinct correlated and topologically nontrivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases, and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes.

View Article and Find Full Text PDF

Significance: Diabetes is a prevalent disease worldwide that can cause severe health problems. Accurate blood glucose detection is crucial for diabetes management, and noninvasive methods can be more convenient and less painful than traditional finger-prick methods.

Aim: We aim to report a noncontact speckle-based blood glucose measurement system that utilizes artificial intelligence (AI) data processing to improve glucose detection accuracy.

View Article and Find Full Text PDF

The cross-sectional dimensions of nanowires set the quantization conditions for the electronic subbands they host. These can be used as a platform to realize one-dimesional topological superconductivity. Here we develop a protocol that forces such nanowires to kink and change their growth direction.

View Article and Find Full Text PDF

The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states.

View Article and Find Full Text PDF

Dual topological materials are unique topological phases that host coexisting surface states of different topological nature on the same or on different material facets. Here, we show that BiTeI is a dual topological insulator. It exhibits band inversions at two time reversal symmetry points of the bulk band, which classify it as a weak topological insulator with metallic states on its 'side' surfaces.

View Article and Find Full Text PDF

Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw or edge dislocations (including step edges) in the absence of weak topological indices. When this occurs, the helical mode is necessarily bound to a dislocation characterized by a fractional Burgers vector, macroscopically detected by the existence of a stacking fault.

View Article and Find Full Text PDF

The growing diversity of topological classes leads to ambiguity between classes that share similar boundary phenomenology. This is the status of bulk bismuth. Recent studies have classified it as either a strong or a higher-order topological insulator, both of which host helical modes on their boundaries.

View Article and Find Full Text PDF

Bulk-surface correspondence in Weyl semimetals ensures the formation of topological "Fermi arc" surface bands whose existence is guaranteed by bulk Weyl nodes. By investigating three distinct surface terminations of the ferromagnetic semimetal CoSnS, we verify spectroscopically its classification as a time-reversal symmetry-broken Weyl semimetal. We show that the distinct surface potentials imposed by three different terminations modify the Fermi-arc contour and Weyl node connectivity.

View Article and Find Full Text PDF

Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries.

View Article and Find Full Text PDF

It was recently shown that in situ epitaxial aluminum coating of indium arsenide nanowires is possible and yields superior properties relative to ex-situ evaporation of aluminum ( Nat. Mater. 2015 , 14 , 400 - 406 ).

View Article and Find Full Text PDF

Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands.

View Article and Find Full Text PDF

Paramedics frequently encounter critical incidents (CIs). Their emotional, cognitive, and behavioral responses to these encounters present them with a variety of difficulties on the way to, during, and after events. The aim of our study was to examine how paramedics working in a large emergency service organization in Israel experienced CIs and the coping strategies they used to deal with these experiences.

View Article and Find Full Text PDF

We report that when budding yeast are transferred to low-metal environment, they adopt a proliferation pattern in which division is restricted to the subpopulation of mother cells which were born in rich conditions, before the shift. Mother cells continue to divide multiple times following the shift, generating at each division a single daughter cell, which arrests in G1. The transition to a mother-restricted proliferation pattern is characterized by asymmetric segregation of the vacuole to the mother cell and requires the transcription repressor Whi5.

View Article and Find Full Text PDF

Vortex matter in Bi(2)Sr(2)CaCu(2)O(8) with a low concentration of tilted columnar defects (CDs) was studied using magneto-optical measurements and molecular dynamics simulations. It is found that while the dynamic properties are significantly affected by tilting the magnetic field away from the CDs, the thermodynamic transitions are angle independent. The simulations indicate that vortex pancakes remain localized on the CDs even at large tilting angles.

View Article and Find Full Text PDF

The thermodynamic phase diagram of Bi2Sr2CaCu2O8 was mapped by measuring local equilibrium magnetization M(H,T) in the presence of vortex shaking. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium M(T) slope.

View Article and Find Full Text PDF

Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.

View Article and Find Full Text PDF

Inverse melting is the process in which a crystal reversibly transforms into a liquid or amorphous phase when its temperature is decreased. Such a process is considered to be very rare, and the search for it is often hampered by the formation of non-equilibrium states or intermediate phases. Here we report the discovery of first-order inverse melting of the lattice formed by magnetic flux lines in a high-temperature superconductor.

View Article and Find Full Text PDF