Publications by authors named "Avraham Klein"

Quantum materials have a fascinating tendency to manifest novel and unexpected electronic states upon proper manipulation. Ideally, such manipulation should induce strong and irreversible changes and lead to new relevant length scales. Plastic deformation introduces large numbers of dislocations into a material, which can organize into extended structures and give rise to qualitatively new physics as a result of the huge localized strains.

View Article and Find Full Text PDF

The duality between deformations of elastic bodies and noninertial flows in viscous liquids has been a guiding principle in decades of research. However, this duality is broken when a spheroidal or other doubly curved liquid film is suddenly forced out of mechanical equilibrium, as occurs, e.g.

View Article and Find Full Text PDF

We study superconductivity in a three-dimensional zero-density Dirac semimetal in proximity to a ferroelectric quantum critical point. We find that the interplay of criticality, inversion-symmetry breaking, and Dirac dispersion gives rise to a robust superconducting state at the charge-neutrality point, where no Fermi surface is present. Using Eliashberg theory, we show that the ferroelectric quantum critical point is unstable against the formation of a ferroelectric density wave (FDW), whose fluctuations, in turn, lead to a first-order superconducting transition.

View Article and Find Full Text PDF

The origin of the pseudogap behavior, found in many high-T superconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a quantum-critical non-Fermi liquid.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how nonanalytic changes in vortex cores affect vortex structures in weakly connected superfluids.
  • It reveals that in rotating two-dimensional systems, the Abrikosov vortex lattice can become unstable, causing deformations in vortex cores.
  • This instability may also occur in clean superconducting films, suggesting broader implications for these systems.
View Article and Find Full Text PDF