Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices.
View Article and Find Full Text PDFThe objective of the present study was to fabricate microneedles for delivering lipophilic active ingredients (APIs) using digital light processing (DLP) printing technology and quality by design (QbD) supplemented by artificial intelligence (AI) algorithms. In the present study, dissolvable microneedle (MN) patches using ibuprofen (IBU) as a model drug were successfully fabricated with DLP printing technology at ∼ 750 μm height, ∼250 μm base diameter, and tip with radius of curvature (RoC) of ∼ 15 μm. MN patches were comprised of IBU, photoinitiator, Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), polyethylene glycol dimethacrylate (PEGDAMA)550 and distilled water and were developed using the QbD optimization approach.
View Article and Find Full Text PDFIntegrated sensors in "on-a-chip" cellular models are a necessity for granularity in data collection required for advanced biosensors. As these models become more complex, the requirement for the integration of electrogenic cells is apparent. Interrogation of such cells, whether alone or within a connected cellular framework, are best achieved with microelectrodes, in the form of a microelectrode array (MEA).
View Article and Find Full Text PDFWe have developed a new technology for the realization of composite biosensor systems, capable of measuring electrical and electrophysiological signals from electrogenic cells, using SeedEZ™ 3D cell culture-scaffold material. This represents a paradigm-shift for BioMEMS processing; 'Biology-Microfabrication' versus the standard 'Microfabrication-Biology' approach. An Interdigitated Electrode (IDE) developed on the 3D cell-scaffold was used to successfully monitor acute cardiomyocyte growth and controlled population decline.
View Article and Find Full Text PDFMicrofabrication and assembly of a Three-Dimensional Microneedle Electrode Array (3D MEA) based on a glass-stainless steel platform is demonstrated involving the utilization of non-traditional "Makerspace Microfabrication" techniques featuring cost-effective, rapid fabrication and an assorted biocompatible material palette. The stainless steel microneedle electrode array was realized by planar laser micromachining and out-of-plane transitioning to have a 3D configuration with perpendicular transition angles. The 3D MEA chip is bonded onto a glass die with metal traces routed to the periphery of the chip for electrical interfacing.
View Article and Find Full Text PDFWe explore the capabilities and limitations of 3D printed microserpentines (µserpentines) and utilize these structures to develop dynamic 3D microelectrodes for potential applications in in vitro, wearable, and implantable microelectrode arrays (MEAs). The device incorporates optimized 3D printed µserpentine designs with out-of-plane microelectrode structures, integrated on to a flexible Kapton® package with micromolded PDMS insulation. The flexibility of the optimized, printed µserpentine design was calculated through effective stiffness and effective strain equations, so as to allow for analysis of various designs for enhanced flexibility.
View Article and Find Full Text PDFWe demonstrate use of makerspace techniques involving subtractive microtechnologies to fabricate micromilled microneedles (µMMNs) of stainless steel (SS) for precise delivery of agrochemicals into vascular bundles of plant tissue. Precision delivery is of immense importance for systemic pathogen control in specific areas of plant tissue. Optimization of the micromilling allows for selective removal of SS at the microscale and the microfabrication of a 5 × 5 array of µMMNs having both base width and height of 500 µm to enable precise puncture into the stem of citrus saplings.
View Article and Find Full Text PDFConventional two-dimensional microelectrode arrays (2D MEAs) in the market involve long manufacturing timeframes, have cleanroom requirements, and need to be assembled from multiple parts to obtain the final packaged device. For MEAs to be "used and tossed", manufacturing has to be moved from the cleanroom to makerspaces. In order to enable makerspace fabricated MEAs comparable to conventional MEAs, the microfabrication processes must be optimized to have similar electrical properties along with biocompatibility and number of recording sites.
View Article and Find Full Text PDFWe present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardiac electrophysiology, (ii) microneedle array targeted at drug delivery through a transdermal route and (iii) multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices.
View Article and Find Full Text PDFAdverse cardiac events are a major cause of late-stage drug development withdrawals. Improved in vitro systems for predicting cardiotoxicity are of great interest to prevent these events and to reduce the expenses involved in the introduction of cardiac drugs into the marketplace. Interdigitated electrodes (IDEs) affixed with a culture well provide a simple, suitable solution for in vitro analysis of cells because of their high sensitivity, ease of fabrication, and label-free, nondestructive analysis.
View Article and Find Full Text PDFHerein, we report the fabrication of flexible solar cells based on a crystalline p-Si/n-ZnO heterostructure for the first time. An enhancement of ∼52% in the base efficiency was achieved by the application of spherical SiO nanoparticles as light trapping structures on the top. The use of ZnO not only offers a facile route of synthesis, but also provides an additional advantage of large band bending, leading to notable open circuit voltage and formation of an intermediate ultra-thin barrier layer of ZnSiO for minimized carrier recombination.
View Article and Find Full Text PDFAnalysis and optimization of silicon nano-structured geometry (black silicon) for photovoltaic applications has been reported. It is seen that a unique class of geometry: micro-nanostructure has the potential to find a balance between the conflicting interests of reduced reflection for wide angles of incidence, reduced surface area enhancement due to the nano-structuring of the substrate and reduced material wastage due to the etching of the silicon substrate to realize the geometry itself. It is established that even optimally designed micro-nanostructures would not be useful for conventional wafer based approaches.
View Article and Find Full Text PDF