The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFIn this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.
View Article and Find Full Text PDFBackground: Kidneys are at risk from drug-induced toxicity, with a significant proportion of acute kidney injury (AKI) linked to medications, particularly cisplatin. Existing cytoprotective drugs for cisplatin-AKI carry side effects, prompting a search for better biological therapies. Mesenchymal Stem Cells (MSCs) are under consideration given their regenerative properties, yet their clinical application has not achieved their full potential, mainly due to variability in the source of MSC tested.
View Article and Find Full Text PDFAutoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are a promising therapy to potentially treat diabetes given their potent anti-inflammatory and immune-modulatory properties. While these regenerative cells have shown considerable promise in cell culture, their clinical translation has been challenging. In part, this can be attributed to these cells not reaching the pancreas to exert their regenerative effects following conventional intravenous (IV) injection, with the majority of cells being trapped in the lungs in the pulmonary first-pass effect.
View Article and Find Full Text PDFGraft versus host disease (GVHD) is one of the most serious complications following stem cell transplant in children and is a major cause of morbidity and mortality. Corticosteroids remain the mainstay of treatment, and although a majority of children respond to systemic steroids, those refractory to or dependent upon corticosteroids suffer from complications secondary to long-term steroid administration. This problem has prompted consideration of steroid-sparing treatment strategies, although the time to clinical remission can be variable.
View Article and Find Full Text PDFPancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components.
View Article and Find Full Text PDFSystemic steroid exposure, while useful for the treatment of acute flares in inflammatory bowel disease (IBD), is associated with an array of side effects that are particularly significant in children. Technical advancements have enabled locoregional intraarterial steroid delivery directly into specific segments of the gastrointestinal tract, thereby maximizing tissue concentration while limiting systemic exposure. We investigated the feasibility of intraarterial steroid administration into the bowel in a cohort of nine pediatric patients who had IBD.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are gaining increasing prominence as an effective regenerative cellular therapy. However, ensuring consistent and reliable effects across clinical populations has proved to be challenging. In part, this can be attributed to heterogeneity in the intrinsic molecular and regenerative signature of MSCs, which is dependent on their source of origin.
View Article and Find Full Text PDFIn recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of expanded and freshly isolated umbilical cord-mesenchymal stromal cells.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a major cause of age-related dementia and is characterized by progressive brain damage that gradually destroys memory and the ability to learn, which ultimately leads to the decline of a patient's ability to perform daily activities. Although some of the pharmacological treatments of AD are available for symptomatic relief, they are not able to limit the progression of AD and have several side effects. Mesenchymal stem/stromal cells (MSCs) could be a potential therapeutic option for treating AD due to their immunomodulatory, anti-inflammatory, regenerative, antioxidant, anti-apoptotic, and neuroprotective effects.
View Article and Find Full Text PDFThe field of pediatric interventional radiology encompasses the treatment of a broad range of patients. Whether treating a premature infant who weighs less than 1 kg or treating an adult-sized teenager who weighs more than 100 kg, the innovative skills of the interventional radiologist are required to adapt equipment designed for adult patients, to meet the needs of children. Moreover, children cannot be treated simply as small adults owing to a number of factors, including differences in physiology, disease processes, and treatment techniques between pediatric and adult patients.
View Article and Find Full Text PDFAlzheimer's disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms. Identifying novel biomarkers for Alzheimer's disease has the potential for patient risk stratification, early diagnosis, and disease monitoring in response to therapy. A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is still an emergency in many countries. Herein, we report treatment with human placental-derived mesenchymal stromal cells transfusion (hPD-MSCT) in a critically ill infant diagnosed with COVID-19. A 28-day-old male infant with a history of pneumonia was referred to our center with decreased SpO (92%) and fever (38.
View Article and Find Full Text PDFAutologous conditioned serum (ACS) is a blood-derived product that is prepared by the incubation of whole blood with medical-grade glass beads, resulting in serum enrichment in interleukin-1 receptor antagonist (IL-1Ra), anti-inflammatory cytokines (IL-4, IL-10, and IL-13), and high concentrations of growth factors. ACS has shown qualitatively and quantitatively better therapeutic effects than most established pharmacological treatments and surgery for joint diseases given its ability to both target the inflammatory cascade to decrease cartilage destruction as well as improve endogenous repair mechanisms. ACS application is simple and safe with limited adverse effects.
View Article and Find Full Text PDFIn the present work, we developed, characterized, and tested an implantable graphene bioscaffold which elutes dexamethasone (Dex) that can accommodate islets and adipose tissue–derived mesenchymal stem cells (AD-MSCs). In vitro studies demonstrated that islets in graphene–0.5 w/v% Dex bioscaffolds had a substantial higher viability and function compared to islets in graphene-alone bioscaffolds or islets cultured alone ( < 0.
View Article and Find Full Text PDFType-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic--glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules.
View Article and Find Full Text PDF