Antisense oligonucleotides (ASOs) carry an enormous therapeutic potential in different research areas, however, the lack of appropriate carriers for their delivery to the target tissues is hampering their clinical translation. The present study investigates the application of novel biomimetic nano-vesicles, Nano-Ghosts (NGs), for the delivery of ASOs to human mesenchymal stem cells (MSCs), using a microRNA inhibitor (antimiR) against miR-221 as proof-of-concept. The integration of this approach with a hyaluronic acid-fibrin (HA-FB) hydrogel scaffold is also studied, thus expanding the potential of NGs applications in regenerative medicine.
View Article and Find Full Text PDFCell migration has a central role in osteochondral defect repair initiation and biomaterial-mediated regeneration. New advancements to reestablish tissue function include biomaterials and factors promoting cell recruitment, differentiation and tissue integration, but little is known about responses to mechanical stimuli. In the present pilot study, we tested the influence of extrinsic forces in combination with biomaterials releasing chemoattractant signals on cell migration.
View Article and Find Full Text PDFObjective: Osteoarthritis (OA) is a widespread degenerative joint disease leading to progressive loss of function and pain. Available treatments do not provide long-term relief or improvement. This study aimed to assess the safety and efficacy of a novel intra articular supplement, made of high molecular-weight hyaluronic acid (HA) uniquely conjugated to either purified (RegenoGel) or autologous plasma-derived fibrinogen (RegenoGel-OSP), as a long-term treatment for knee OA.
View Article and Find Full Text PDFCurrent treatments for cartilage lesions are often associated with fibrocartilage formation and donor site morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Biocompatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors may better support cartilage regeneration.
View Article and Find Full Text PDFFibroblast growth factor (FGF) signaling contributes to failure of remyelination in multiple sclerosis, but targeting this therapeutically is complicated by its functional pleiotropy. We now identify FGF2 as a factor up-regulated by astrocytes in active inflammatory lesions that disrupts myelination via FGF receptor 2 (FGFR2) mediated activation of Wingless (Wnt) signaling; pharmacological inhibition of Wnt being sufficient to abrogate inhibition of myelination by FGF2 in tissue culture. Using a novel FGFR1-selective agonist (F2 V2) generated by deleting the N-terminal 26 amino acids of FGF2 we demonstrate polarizing signal transduction to favor FGFR1 abrogates FGF mediated inhibition of myelination but retains its ability to induce expression of pro-myelinating and immunomodulatory factors that include Cd93, Lif, Il11, Hbegf, Cxcl1 and Timp1.
View Article and Find Full Text PDFWe investigated the effects of a fibrin-hyaluronic acid hydrogel (FBG-HA) and fibroblast growth factor 18 (FGF-18) for nucleus pulposus (NP) regeneration. Healthy bovine ( = 4) and human degenerated NP cells ( = 4) were cultured for 14 days in FBG-HA hydrogel with FGF-18 (∆51-mutant or wild-type) in the culture medium. Gene expression, DNA content, and glycosaminoglycan (GAG) synthesis were evaluated on day 7 and 14.
View Article and Find Full Text PDFBackground: The objective of this study was to assess the efficacy of intra-articular injections of hyaluronic acid (HA) and a novel, on-site conjugate of HA with autologous fibrinogen in platelet-rich plasma (HA-PRP) in a canine model of osteoarthritis (OA) METHODS: Twelve beagle dogs underwent a unilateral resection of the cranial cruciate ligament (CrCL) of the stifle joint. Clinical and radiographic signs of OA were confirmed in all dogs 8 weeks following CrCL resection and prior to treatment. The dogs were randomized into three groups: saline (n = 4), HA (n = 4), and HA-PRP (n = 4).
View Article and Find Full Text PDF() amplification has been reported in 5-10% of gastric cancer (GC) and is associated with poor prognosis. In this study, we characterized the anti-tumor effect of PRO-007, a newly developed recombinant monoclonal antibody that targets FGFR2, in GC cell lines KATO III (with amplification) and NCI-N87 (without amplification). Validation was performed in parallel using two patient-derived tumor cells (PDCs) from patients with GC.
View Article and Find Full Text PDFArticular cartilage is frequently injured by trauma or osteoarthritis, with limited and inadequate treatment options. We investigated a new strategy based on hydrogel-mediated delivery of a locked nucleic acid microRNA inhibitor targeting miR-221 (antimiR-221) to guide in situ cartilage repair by endogenous cells. First, we showed that transfection of antimiR-221 into human bone marrow-derived mesenchymal stromal cells (hMSCs) blocked miR-221 expression and enhanced chondrogenesis in vitro.
View Article and Find Full Text PDFTo date no disease-modifying drugs for osteoarthritis (OA) are available, with treatment limited to the use of pain killers and prosthetic replacement. The ADAMTS (A Disintegrin and Metallo Proteinase with Thrombospondin Motifs) enzyme family is thought to be instrumental in the loss of proteoglycans during cartilage degeneration in OA, and their inhibition was shown to reverse osteoarthritic cartilage degeneration. Locked Nucleic Acid (LNA)-modified antisense oligonucleotides (gapmers) released from biomaterial scaffolds for specific and prolonged ADAMTS inhibition in co-delivered and resident chondrocytes, is an attractive therapeutic strategy.
View Article and Find Full Text PDFIntervertebral disc (IVD) degeneration is the leading trigger of low back pain, which causes disability and leads to enormous healthcare toll worldwide. Biological treatment with growth factors has evolved as potential therapy for IVD regeneration. Bone morphogenetic protein 2 (BMP-2) and BMP-7 have shown promise in this regard.
View Article and Find Full Text PDFIntervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo.
View Article and Find Full Text PDFAim: To develop a biomimetic polymeric injectable hydrogel that can support nucleus pulposus (NP) regeneration.
Materials & Methods: Natural polymer-based hydrogels were synthesized using fibrinogen (FBG) and hyaluronic acid (HA), conjugated by a novel two-step procedure. Bovine NP cells were cultured in FBG-HA conjugate-based 3D beads in vitro and in a nucleotomized organ culture model.
Articular cartilage injuries present a challenge for the clinician. Autologous chondrocyte implantation embedded in scaffolds are used to treat cartilage defects with favorable outcomes. Autologous serum is often used as a medium for chondrocyte cell culture during the proliferation phase of the process of such products.
View Article and Find Full Text PDFObjective: To evaluate change over time of clinical scores, morphological MRI of cartilage appearance and quantitative T2 values after implantation with BioCart™II, a second generation matrix-assisted implantation system.
Methods: Thirty-one patients were recruited 6-49 months post surgery for cartilage defect in the femoral condyle. Subjects underwent MRI (morphological and T2-mapping sequences) and completed the International Knee Documentation Committee (IKDC) questionnaire.
Objective: The multipotential nature of stem or progenitor cells apparently makes them the ideal choice for any cell therapy, but this as yet remains to be proven. This study (30 subjects) was designed to compare the potential to repair articular cartilage of chondrocytes taken from different regions in osteoarthritic cartilage with that of mesenchymal stem cells prepared from bone marrow of the same subject.
Design: Cartilage biopsies, bone marrow, and blood samples were taken from each of 30 individuals with chronic osteoarthritis (aged 62-85 years) undergoing total knee replacement.
Collagen's biocompatibility, biodegradability and low immunogenicity render it advantageous for extensive application in pharmaceutical or biotechnological disciplines. However, typical collagen extraction from animal or cadaver sources harbors risks including allergenicity and potential sample contamination with pathogens. In this work, two human genes encoding recombinant heterotrimeric collagen type I (rhCOL1) were successfully coexpressed in tobacco plants with the human prolyl-4-hydroxylase (P4H) and lysyl hydroxylase 3 (LH3) enzymes, responsible for key posttranslational modifications of collagen.
View Article and Find Full Text PDFThe angiogenic events that accompany bone regeneration function as a "limiting factor" and are the primary regulatory mechanisms that direct the healing process. The general aim of this study was to test whether blood-derived progenitor cells that have endothelial characteristics (EPC), when applied to a large segmental defect, would promote bone regeneration. We established a critical-sized gap platform in sheep tibiae.
View Article and Find Full Text PDFAchondroplasia, results from a mutation in the FGF receptor type 3, leading to receptor hyperactivation and subsequent amplification of FGF receptor type 3 signals. We have tested the ability of pyridoxal-5'-phosphate-6-azophenyl-2', 4'-disulfonate (PPADS) to decrease the overactivation and signalling of FGF receptor type 3 in achondroplasic chondrocytes. PPADS reduced the tyrosine phosphorylation of FGF receptor type 3 triggered by fibroblast growth factor 9 (FGF9) (50% reduction), as well as the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway.
View Article and Find Full Text PDFHuman embryonic stem cells (HESCs) are unique in their capacity to self-renew while remaining pluripotent. This undifferentiated state must be actively maintained by secreted factors. To identify autocrine factors that may support HESC growth, we have taken a global genetic approach.
View Article and Find Full Text PDFAchondroplasia is the most common type of dwarfism, characterised by a mutation in the gene that encodes the fibroblast growth factor receptor 3 (FGFR3). Achondroplasia mainly affects the chondrocytes and therefore bones do not grow properly since intracellular pathways are altered. In this sense, defective calcium signaling by mutant FGFR3 has been previously described.
View Article and Find Full Text PDFCD44 is a multistructural and multifunctional glycoprotein, the diversity of which is generated by alternative splicing. In this communication we review some aspects related to CD44 structure and function in experimental autoimmune inflammation, focusing on research performed in our own laboratory. We have found that CD44 targeting by antibody, passively injected into DBA/1 mice with collagen-induced arthritis (CIA) and NOD mice with type I diabetes or actively generated by CD44 cDNA vaccination of SJL/j mice with autoimmune encephalomyelitis, markedly reduced the pathological manifestations of these diseases by attenuating cell migration of the inflammatory cells and/or by their apoptotic killing.
View Article and Find Full Text PDFAchondroplasia is characterised by a mutation in the gene that encodes for the FGF receptor type 3 (FGFR3), producing a hyperactivation of this receptor and a subsequent increase in MAPK activity. We have tested the ability of nucleotides to decrease the activation of MAPK in chondrocytes with achondroplasic FGFR3 receptor. Diadenosine tetraphosphate, Ap(4)A, reduced the phosphorylation of pERK1/2 triggered by FGF9 (38% reduction).
View Article and Find Full Text PDFThe association of fibroblast growth factor receptor 3 (FGFR3) expression with t(4;14) multiple myeloma (MM) and the demonstration of the transforming potential of this receptor tyrosine kinase (RTK) make it a particularly attractive target for drug development. We report here a novel and highly specific anti-FGFR3-neutralizing antibody (PRO-001). PRO-001 binds to FGFR3 expressed on transformed cells and inhibits FGFR3 autophosphorylation and downstream signaling.
View Article and Find Full Text PDF