In mammalian cells, the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), which catalyzes the rate-limiting step in the mevalonate pathway, is ubiquitylated and degraded by the 26 S proteasome when mevalonate-derived metabolites accumulate, representing a case of metabolically regulated endoplasmic reticulum-associated degradation (ERAD). Here, we studied which mevalonate-derived metabolites signal for HMGR degradation and the ERAD step(s) in which these metabolites are required. In HMGR-deficient UT-2 cells that stably express HMGal, a chimeric protein between β-galactosidase and the membrane region of HMGR, which is necessary and sufficient for the regulated ERAD, we tested inhibitors specific to different steps in the mevalonate pathway.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) glycoprotein HMG-CoA reductase (HMGR) catalyzes the rate-limiting step in sterols biosynthesis. Mammalian HMGR is ubiquitinated and degraded by the proteasome when sterols accumulate in cells, representing the best example for metabolically controlled ER-associated degradation (ERAD). This regulated degradation involves the short-lived ER protein Insig-1.
View Article and Find Full Text PDFBackground/aims: The direct implication of low-density lipoprotein receptor (LDLR) in hepatitis C virus (HCV) infection of human hepatocyte has not been demonstrated. Normal primary human hepatocytes infected by serum HCV were used to document this point.
Methods: Expression and activity of LDLR were assessed by RT-PCR and LDL entry, in the absence or presence of squalestatin or 25-hydroxycholesterol that up- or down-regulates LDLR expression, respectively.
The stability of the endoplasmic reticulum (ER) glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in cholesterol biosynthesis, is negatively regulated by sterols. HMGR is anchored in the ER via its N-terminal region, which spans the membrane eight times and contains a sterol-sensing domain. We have previously established that degradation of mammalian HMGR is mediated by the ubiquitin-proteasome system (Ravid, T.
View Article and Find Full Text PDFApomine, a novel 1,1-bisphosphonate ester, has been shown to lower plasma cholesterol concentration in several species. Here we show that Apomine reduced the levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the rate-limiting enzyme in the mevalonate pathway, both in rat liver and in cultured cells. Apomine resembles sterols such as 25-hydroxycholesterol in its ability to potently accelerate the rate of HMGR degradation by the ubiquitin-proteasome pathway, a process that depends on the transmembrane domain of the enzyme.
View Article and Find Full Text PDFThe ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER.
View Article and Find Full Text PDF3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase.
View Article and Find Full Text PDFExpression of the X inactivation-specific transcript (XIST:) gene has previously been shown by reverse transcription-polymerase chain reaction (RT-PCR) to be present at the 4-cell stage of female mouse embryos. This early expression, which is followed by X inactivation in the extra-embryonic tissues, is maternally imprinted. By the blastocyst stage, as the embryonic lineages begin to form, the imprint is lost and expression becomes random.
View Article and Find Full Text PDFL-90 cells were selected to grow in the presence of serum lipoproteins and 90 microM lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). L-90 cells massively accumulate HMGR, a result of >10-fold amplification of the gene and 40-fold rise in mRNA, and also overexpress other enzymes of the mevalonate pathway. Western blot and promoter-luciferase analyses indicate that transcriptional regulation of sterol-responsive genes by 25-hydroxycholesterol or mevalonate is normal.
View Article and Find Full Text PDFHeparan sulfate and low density lipoprotein receptor related protein (LRP) have been shown to participate in the uptake and degradation of the enzyme lipoprotein lipase (LPL). Yet, the contribution of each of these pathways to LPL metabolism and their possible dependence is unknown. In the present study we examined the metabolism of 125I-labeled LPL in untreated and heparinase-treated primary wild-type mouse embryonic fibroblasts (MEF) and in mouse fibroblasts that express single LRP allele (PEA-10) or are lacking the LRP (PEA-13).
View Article and Find Full Text PDFObjective: An Rh-negative woman with preexisting anti-D antibodies may affect some or all subsequent fetuses, depending on the genotype of her Rh-positive partner. Currently, a reliable technique for an absolute determination of RhD genotype is not available. This study was initiated to develop an accurate method for RhD genotyping in men.
View Article and Find Full Text PDFMol Hum Reprod
January 1996
A genetic assay by single blastomere analysis was developed for rhesus (RhD) blood group typing of early cleavage stage embryos. The method, which is based on the simultaneous amplification of an RhD-specific sequence and an internal control in single cells, was applied for the selective transfer of RhD-negative embryos in a family of an RhD sensitized woman and a heterozygote partner. The RhD status of two out of three biopsied embryos was determined.
View Article and Find Full Text PDFLipoprotein lipase (LPL) is rapidly and efficiently cleared from the circulation by the liver through an as yet unclear mechanism. In the present study, we determined the nature of LPL interactions with the liver parenchimal cell line HepG2 as compared to other cells in culture. Binding, cell association and degradation of 125I-labelled bovine milk LPL by HepG2 cells, normal and low density lipoprotein (LDL) receptor-negative human fibroblasts and Chinese hamster ovary (CHO) cells show similar values irrespective of source and origin.
View Article and Find Full Text PDFW1282X (W) and delta F508 (delta) are the two most common mutations of the cystic fibrosis Israeli population. Patients who are homozygotes (WW and delta delta) as well as compound heterozygotes (W delta) present a severe phenotype of the disease. In the present study, we have developed a polymerase chain reaction (PCR)-based method for the detection of both mutations simultaneously in a single blastomere.
View Article and Find Full Text PDFTo test the possibility that HMG-CoA reductase inhibitors reduce LDL mass by an increased VLDL catabolism, we determined the effect of simvastatin therapy on cellular metabolism of VLDL in 18 patients with primary hypercholesterolaemia. Six months of simvastatin therapy was followed by 26%, 31% and 21% reduction of plasma total cholesterol, LDL-cholesterol and plasma triglyceride levels, respectively. Before therapy, patients' VLDL metabolism in cultured human normal skin fibroblasts was similar to control VLDL.
View Article and Find Full Text PDFThe isolation of rough and smooth endoplasmic reticulum from rat parotid salivary gland is described. The rough membrane was stripped of its bound ribosomes using the KCl-puromycin method. Rough endoplasmic reticulum was reconstituted from stripped-rough membrane and polyribosomes.
View Article and Find Full Text PDF