The ability of plants to uptake nutrients from mineral dust lying on their foliage may prove to be an important mechanism by which plants will cope with increasing CO levels in the atmosphere. This mechanism had only recently been reported and was shown to compensate for the projected dilution in plants ionome. However, this phenomenon has yet to be thoroughly studied, particularly in terms of the expected trends under different dust types and varying atmospheric CO concentrations, as projected by the IPCC.
View Article and Find Full Text PDFPhosphorus (P) availability to forest trees is often limited by local soil conditions that increase its fixation to soil minerals. In certain regions, atmospheric-P inputs can compensate for low soil-P availability. Among atmospheric-P sources, desert dust is the most dominant.
View Article and Find Full Text PDFOveruse of agrochemicals is linked to nutrient loss, greenhouse gases (GHG) emissions, and resource depletion thus requiring the development of sustainable agricultural solutions. Cultivated microalgal biomass could provide such a solution. The environmental consequences of algal biomass application in agriculture and more specifically its effect on soil GHG emissions are understudied.
View Article and Find Full Text PDFPhosphorus (P) scarcity constrains plant growth in many ecosystems worldwide. In P-poor ecosystems, the biogeochemical paradigm links plant productivity with the deposition of P-rich dust originating from desert storms. However, dust P usually has low bioavailability and is thought to be utilized solely via roots.
View Article and Find Full Text PDFHumid tropical forests are among the most productive ecosystems globally, yet they often occur on soils with high phosphorus (P) sorption capacity, lowering P availability to biota. Short-term anoxic events are thought to release sorbed P and enhance its acquisition by soil microbes. However, the actual effects of anoxic conditions on microbial P acquisition in humid tropical forest soils are surprisingly poorly studied.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
June 2017
Rationale: Stable isotope tracers are commonly used to track the transformations of organic carbon (C) and nitrogen (N) in soils but they have not been used to follow coupled cycles of phosphorus (P) and C because P has only one stable isotope.
Methods: A novel dually labeled substrate, composed of a C-labeled glucose backbone attached to a phosphate group with known δ O value, was used to follow the fate of C and P derived from the same compound. The substrate was amended to soils from two natural oak forests, differing in their P levels, and the δ C values of respired CO and the δ O values of soil bioavailable P were measured.
Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments.
View Article and Find Full Text PDFThe input of phosphorus (P) through atmospheric deposition can be a major source of P to fresh water bodies and may strongly affect their biogeochemistry. In Lake Kinneret (LK), northern Israel, dust deposition provides a significant fraction of the bioavailable P input. Here, we demonstrate that the oxygen isotopic composition of resin-extractable inorganic phosphate (δ(18)OP) in dust particles can be used to identify the phosphate source.
View Article and Find Full Text PDFThe roles of transforming growth factor-β (TGF-β) receptor endocytosis in signaling have been investigated in numerous studies, mainly through the use of endocytosis inhibitory treatments, yielding conflicting results. Two potential sources for these discrepancies were the pleiotropic effects of a general blockade of specific internalization pathways and the scarce information on the regulation of the endocytosis of the signal-transducing type I TGF-β receptor (TβRI). Here, we employed extracellularly tagged myc-TβRI (wild type, truncation mutants, and a series of endocytosis-defective and endocytosis-enhanced mutants) to directly investigate the relationship between TβRI endocytosis and signaling.
View Article and Find Full Text PDF