Photoionization is one of the most fundamental processes in light-matter interaction. Advanced attosecond photoelectron spectroscopy provides the possibility to characterize the ultrafast photoemission process in an extremely short attosecond time scale. Following scattering symmetry rules, residual ions encode ultrafast photoionization prints at the instant of electron removal forming an alternative electron emission chronoscope.
View Article and Find Full Text PDFWe demonstrate a high harmonic-generation scheme that offers control over the bandwidth of the spectral peaks. The scheme uses a vectorial two-color driver with close central frequencies, generated by spectrally splitting a linearly polarized input femtosecond-duration laser pulse and subsequently recombining the two halves after their polarizations are made cross-elliptical and counter-rotating. This results in the generation of new emission channels that coalesce into broad odd-integer HHG peaks, the bandwidth of each being proportional to the frequency difference between the two colors, to the harmonic order and inversely proportional to the driver fields' ellipticities.
View Article and Find Full Text PDFSpectral splitting of high harmonic radiation is observed when a gas target is irradiated with a high-energy laser pulse, having an extreme amount of frequency chirp. The phenomenon, which may be observed only by using a multi-TW laser system, originates from the temporal evolution of the phase-matching conditions. We illustrate how these conditions are mapped to the spectral domain, and present experimental evidence which is validated by our model.
View Article and Find Full Text PDFWe present an experimental study of optical time-refraction caused by time-interfaces as short as a single optical cycle. Specifically, we study the propagation of a probe pulse through a sample undergoing a large refractive index change induced by an intense modulator pulse. In these systems, increasing the refractive index abruptly leads to time-refraction where the spectrum of all the waves propagating in the medium is red-shifted, and subsequently blue-shifted when the refractive index relaxes back to its original value.
View Article and Find Full Text PDFSymmetries and their associated selection rules are extremely useful in many fields of science. For systems of electromagnetic (EM) fields interacting with matter, the symmetries of matter and the EM fields' time-dependent polarization determine the properties of the nonlinear responses, and they can be facilitated for controlling light emission and enabling ultrafast symmetry breaking spectroscopy of various properties. Here, we formulate a general theory that describes the macroscopic and microscopic dynamical symmetries (including quasicrystal-like symmetries) of EM vector fields, revealing many previously unidentified symmetries and selection rules in light-matter interactions.
View Article and Find Full Text PDFAttosecond chronoscopy is central to the understanding of ultrafast electron dynamics in matter from gas to the condensed phase with attosecond temporal resolution. It has, however, not yet been possible to determine the timing of individual partial waves, and steering their contribution has been a substantial challenge. Here, we develop a polarization-skewed attosecond chronoscopy serving as a partial wave meter to reveal the role of each partial wave from the angle-resolved photoionization phase shifts in rare gas atoms.
View Article and Find Full Text PDFSelection rules are often considered a hallmark of symmetry. Here, we employ symmetry-breaking degrees of freedom as synthetic dimensions to demonstrate that symmetry-broken systems systematically exhibit a specific class of symmetries and selection rules. These selection rules constrain the scaling of a system's observables (non-perturbatively) as it transitions from symmetric to symmetry-broken.
View Article and Find Full Text PDFPhase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope.
View Article and Find Full Text PDFWe propose and numerically demonstrate a method for obtaining high-harmonic radiation with desirable elliptical polarization. Atoms are shined by a combination of a strong linearly-polarized laser field and an additional weak field, which is elliptically polarized in a plane perpendicular to the polarization direction of the strong field. The strong driver ionizes and recollides electrons with their parent ion, while the weak field perturbatively drives the electrons away from "head-on" collision.
View Article and Find Full Text PDFWe demonstrate self-phase modulation (SPM) spectral broadening in two-dimensional solitons in homogeneous media using two different schemes. In the active mode, a train of pulses are collectively trapped and form a spatial soliton through a photorefractive, slowly responding, and electronically controlled self-focusing nonlinearity, and each pulse experiences spectral broadening by the fast SPM nonlinearity. In the passive mode, the pulse-train beam is guided in a waveguide that is optically induced by a continuous-wave thermal spatial soliton.
View Article and Find Full Text PDFWe propose a scheme for producing attosecond pulses with sophisticated spatio-spectral waveforms. The profile of a seed attosecond pulse is modified and its central frequency is up-converted through interaction with an infrared pump pulse. The transverse profile of the infrared beam and a spatiotemporal shift between the seed and infrared pulses are used for manipulating the spatio-spectral waveform of the generated pulse beam.
View Article and Find Full Text PDFWeak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons.
View Article and Find Full Text PDF