To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and can be used to study the changes in the state of the system over time. For many model classes, such as discrete or continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics.
View Article and Find Full Text PDFThe last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets represent only a small fraction of the system's behavior, making the visualization of full system behavior difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated into a larger-scale representation or model of the system.
View Article and Find Full Text PDFGroups of related genes abound in large eukaryotic genomes. In such 'subgenomes', homology modeling carried out for a few genes will probably have relevance to the entire group. Subgenomes also afford unique ways of determining protein structural information.
View Article and Find Full Text PDF