Ion intercalation of perovskite oxides in liquid electrolytes is a very promising method for controlling their functional properties while storing charge, which opens up its potential application in different energy and information technologies. Although the role of defect chemistry in oxygen intercalation in a gaseous environment is well established, the mechanism of ion intercalation in liquid electrolytes at room temperature is poorly understood. In this study, the defect chemistry during ion intercalation of LaSrFeO thin films in alkaline electrolytes is studied.
View Article and Find Full Text PDFThe Semi-Solid Flow Battery (SSFB) is an interesting energy storage system (ESS) for stationary applications but, in spite of the significant work presented on this technology so far, understanding the chemical and physical factors limiting its electrochemical performance is still blurred by measurements under static conditions rather than under real operando conditions. In this study, we have used Vulcan carbon as a conductive additive to formulate LiNi1/3Co1/3Mn1/3O2 (NCM) based slurries as the catholyte to characterize electrical and electrochemical performances using a 3-electrode flow cell by electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD), respectively. The results are correlated with post-mortem analyses of recovered slurries using Scanning Electron Microscopy (SEM), Raman spectroscopy and Rietveld refinement of the NCM crystal structure.
View Article and Find Full Text PDF