Background: Gene therapy has been utilized to achieve posterior intertransverse process fusion in rodents. To our knowledge, however, no one has previously reported on the use of this technique to achieve anterior spinal fusion in mammals. The purpose of the present study was to determine if a gene-therapy technique can be utilized to achieve anterior intradiscal fusion in pigs with use of minimally invasive techniques.
View Article and Find Full Text PDFCalcif Tissue Int
August 2002
Many studies have been done involving exercise, impact loading, and the effect on BMD. In some of these studies, particularly those involving outpatient activity, compliance and the specific parameters of an individual's impact loading have been difficult to monitor effectively. In this study, an individual, home-use platform was used to record daily, specific, and reproducible impact forces generated during a heel drop exercise.
View Article and Find Full Text PDFIt has been well established that bone morphogenetic protein-2 (BMP-2) can induce bone formation both in vivo and in vitro, although high concentrations (up to milligrams) of BMP-2 have been required to achieve this effect in vivo. Further, clinical applications are usually limited to a single dose at the time of implantation. In an attempt to prolong the transforming effect of BMP-2 we used a recombinant adenoviral vector carrying the human BMP-2 gene (Adv-BMP2) to transduce marrow-derived mesenchymal stem cells (MSC) of skeletally mature male New Zealand white rabbits.
View Article and Find Full Text PDFExtracellular signal-regulated kinases (Erks), members of the mitogen-activated protein kinase superfamily, play an important role in cell proliferation and differentiation. In this study we employed a dominant negative approach to determine the role of Erks in the regulation of human osteoblastic cell function. Human osteoblastic cells were transduced with a pseudotyped retrovirus encoding either a mutated Erk1 protein with a dominant negative action against both Erk1 and Erk2 (Erk1DN cells) or the LacZ protein (LacZ cells) as a control.
View Article and Find Full Text PDFNumerous bone matrix proteins can interact with alpha(v)-containing integrins including alpha(v)beta3. To elucidate the net effects of the interaction between these proteins and alpha(v)beta3 on osteoblast function, we developed a murine osteoblastic cell line that overexpressed human alpha(v)beta3. Human alpha(v)beta3-integrin was expressed on cell membrane, in which its presence did not alter the surface level of endogenous mouse alpha(v)beta3.
View Article and Find Full Text PDFAlthough estrogens have proved useful in the prevention and treatment of osteoporosis, their side effects (for example, those on breast and endometrial cancer) are worrying to patients and physicians alike. Therefore, selective estrogen receptor modulator (SERM) drugs have been developed for use in their stead. The triphenylethylene drug tamoxifen proved to be protective against bone loss, but had side effects on uterus similar to those of natural estrogens.
View Article and Find Full Text PDFIt has been well established that bone morphogenetic protein-2 (BMP-2) can induce bone formation bothin vivo andin vitro, although high concentrations (up to milligrams) of BMP-2 have been required to achieve this effectin vivo. Further, clinical applications are usually limited to a single dose at the time of implantation. In an attempt to prolong the transforming effect of BMP-2 we used a recombinant adenoviral vector carrying the human BMP-2 gene (Adv-BMP2) to transduce marrow-derived mesenchymal stem cells (MSC) of skeletally mature male New Zealand white rabbits.
View Article and Find Full Text PDFIntegrin-mediated cell-matrix interactions play important roles in regulating cell function. Since transforming growth factor-beta (TGF-beta) modulates many osteoblast activities, we hypothesized that the growth factor acts in part by modulating integrin expression. TGF-beta increased cell adhesion to vitronectin and up-regulated the surface level of alpha(v)beta(5) via increasing beta(5) protein synthesis by a transcriptional mechanism.
View Article and Find Full Text PDFHuman osteoblasts express a repertoire of cadherins, including N-cadherin (N-cad), cadherin-11 (C11), and cadherin-4 (C4). We have previously shown that direct cell-cell adhesion via cadherins is critical for BMP-2-induced osteoblast differentiation. In this study, we have analyzed the regulation of cadherin expression in normal human trabecular bone osteoblasts (HOB), and osteoprogenitor marrow stromal cells (BMC), during exposure to dexamethasone, another inducer of human bone cell differentiation.
View Article and Find Full Text PDFLong-term administration of pharmacological doses of glucocorticoids inhibits bone formation and results in osteoporosis. Since integrin-mediated cell-matrix interactions are essential for osteoblast function, we hypothesized that the detrimental effect of glucocorticoids on bone derived, at least in part, from decreased integrin-matrix interactions. Because alphavbeta3 and alphavbeta5 integrins can interact with several bone matrix proteins, we analyzed the effects of dexamethasone (Dex) on the expression of these integrins in normal human osteoblastic cells.
View Article and Find Full Text PDFMurine osteoclast precursors and osteoblasts express the integrin alpha(v)beta(5), the appearance of which on the cell surface is controlled by the beta(5), and not the alpha(v), subunit. Here, we show that a 173-base pair proximal region of the beta(5) promoter mediates beta(5) basal transcription in macrophage (osteoclast precursor)-like and osteoblast-like cells. DNase I footprinting reveal four regions (FP1-FP4) within the 173-base pair region, protected by macrophage nuclear extracts.
View Article and Find Full Text PDFAlthough basic fibroblast growth factor (FGF-2) had been shown to inhibit type I collagen gene expression in osteoblast, its inhibitory mechanism is unknown. In the present study, we investigated the underlying mechanisms by which growth factors downregulate type I collagen gene expression. Treatment of mouse osteoblastic MC3T3-E1 cells with okadaic acid (40 ng/ml), an inhibitor of phosphoserine/threonine-specific protein phosphatase and activator of ERK1/2, for 24 h and 48 h completely inhibited steady-state mRNA levels of type I collagen.
View Article and Find Full Text PDFContext: Raloxifene hydrochloride, a selective estrogen receptor modulator, prevents bone loss in postmenopausal women, but whether it reduces fracture risk in these women is not known.
Objective: To determine the effect of raloxifene therapy on risk of vertebral and nonvertebral fractures.
Design: The Multiple Outcomes of Raloxifene Evaluation (MORE) study, a multicenter, randomized, blinded, placebo-controlled trial.
J Bone Miner Res
July 1999
Rheumatoid arthritis (RA) is an autoimmune disease characterized by a heavy lymphocytic infiltration into the synovial cavity, resulting in the secretion of a variety of cytokines which ultimately leads to destruction of joint tissue. Among the infiltrating cells are activated T cells which produce specific cytokines capable of osteoclast progenitor cell expansion, fusion, and activation. Cultures of activated human T cells and human osteoblasts (hOBs) were used to study the possibility that lymphokines may act on osteoblasts to produce the osteoclastogenic factor interleukin-6 (IL-6).
View Article and Find Full Text PDFGlucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs.
View Article and Find Full Text PDFChemokines, including interleukin-8 (IL-8), function as key mediators in diverse inflammatory disorders via promoting the recruitment, proliferation, and activation of vascular and immune cells. IL-8 levels are elevated in inflammatory diseases, such as rheumatoid arthritis, osteoarthritis, osteomyelitis, and periodontal disease, that also exhibit progressive bone loss. Therefore, it is possible that IL-8 contributes to the osteopenia associated with these pathological conditions.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem cells are pluripotential cells that have the capacity to differentiate into an osteoprogenitor line. It has been demonstrated that BMP-2 can enhance this differentiation process. In an attempt to prolong the transforming effect of BMP-2, we used an adenoviral vector carrying the human BMP-2 gene to transduce marrow-derived mesenchymal stem cells of New Zealand white rabbits.
View Article and Find Full Text PDFThis article discusses calcitonin as an alternative for patients with established osteoporosis who cannot, will not, or should not proceed with estrogen replacement therapy. Clinical trial data for calcitonin in both injectable and nasal spray formulations and for both lower-dose and higher-dose regimens are presented.
View Article and Find Full Text PDFThe mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.
View Article and Find Full Text PDFWe recently demonstrated the activation of extracellular signal- regulated protein kinase 1 and 2 (ERK1 and ERK2) by IGF-1, FGF-2, and PDGF-BB in normal human osteoblastic (HOB) cells as well as in rat and mouse osteoblastic cells. In this report, we have examined whether c-Jun NH2-Terminal Kinase (JNK) pathway is activated by growth factors and interleukin-1 beta (IL-1 beta) in normal HOB and rat UMR-106 cells using immune-complex kinase assay and anti-active JNK antibody, which recognizes activated forms of both JNK1 and JNK2. Results have demonstrated the presence of JNK1 and JNK2 proteins in normal HOB and UMR-106 cells.
View Article and Find Full Text PDFWe have examined the effects of BMP-2 on the expression of bone matrix proteins in both human bone marrow stromal cells (HBMSC) and human osteoblasts (HOB) and their proliferation and mineralization. Both HBMSC and HOB express BMP-2/-4 type I and type II receptors. Treatment of these two cell types with BMP-2 for 4 weeks in the presence of beta-glycerophosphate and ascorbic acid results in mineralization of their matrix.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 1997
We recently demonstrated that basic fibroblast growth factor (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) mainly activated extracellular signal-regulated kinase 2 (ERK2) in normal human osteoblastic (HOB) and bone marrow stromal (HBMS) cells by an "in-gel" MAP kinase assay, although both ERK1 and ERK2 proteins were present. In the present study, we examined whether ERK1 is also activated by growth factors by using three different MAPK assay procedures, an "in-gel MAP kinase assay," an immune-complex kinase assay, and western blotting with anti-active MAPK antibody which recognizes specifically activated forms of both ERK1 and ERK2. Results have demonstrated that in addition to ERK2, ERK1 is activated by FGF-2 and PDGF-BB in normal HOB and HBMS cells.
View Article and Find Full Text PDFThe Hyp mouse, a model for human X-linked hypophosphatemia (XLH), is characterized by phosphate wasting and defective mineralization. Since osteopontin (OPN) is considered pivotal for biological mineralization, we examined the biosynthesis of OPN in osteoblasts of +/Y and Hyp/Y mice. Immunoprecipitation analyses using a specific antibody to OPN revealed that Hyp/Y and +/Y osteoblasts secrete similar levels of OPN as determined by [35S]-methionine biosynthetic labeling, but a reduced phosphorylation was noted after 32P-PO4 biosynthetic labeling.
View Article and Find Full Text PDFJ Bone Miner Res
August 1997
In an attempt to reduce patient positioning errors, the authors tested the use of a new hip-specific positioning tool, OsteoDyne's Hip Positioner System (HPS). The HPS is an "A" frame splint designed to abduct both legs approximately 15 degrees to hold them in full extension at the hips and knees and to lock the feet in a neutral position. Seventy volunteer women aged 35-82 years were randomly assigned in two age-matched groups (mean age 56 years).
View Article and Find Full Text PDF