Candida albicans (C. albicans) biofilm infections are quite difficult to manage due to their resistance against conventional antifungal drugs. To address this issue, there is a desperate need for new therapeutic drugs.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a devastating neurodegenerative disorder affecting mental ability and interrupts neurocognitive functions. Treating multifactorial conditions of AD with a single-target-directed drug is highly difficult. Thus, a multi-target-directed ligand (MTDL) development strategy has been developed as a promising approach for the treatment of AD.
View Article and Find Full Text PDFBinuclear Ru(II) polypyridyl complexes [Ru(NN)(BIPMB)] (1-4), where N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido [3,2-d:2',3'-f] quinoxaline (dpq), and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been synthesized using suitable precursors and bridging ligand (BIPMB), where BIPMB = 3,3'-bis-{(imidazol-1-yl)-[4,5-f]-1,10-phenanthroline) methyl}-1,1'-biphenyl. The binding mode and affinity of complexes 1-4 with Calf Thymus DNA (CT-DNA) were determined by absorption and steady-state fluorescence spectroscopy. The decrease in viscosity of CT-DNA on sequential addition of these complexes indicated DNA condensation and the result was corroborated by circular dichroism (CD).
View Article and Find Full Text PDFIntroduction: The aim of the study was to evaluate the efficacy and safety of fixed-dose combination (FDC) of metoprolol, telmisartan, and chlorthalidone in patients with essential hypertension and stable coronary artery disease (CAD) who showed inadequate response to dual therapy.
Methods: In this phase III, open-label, multicenter study, 254 adults with stable CAD having uncontrolled hypertension despite being treated with FDC of metoprolol (25/50 mg) and telmisartan (40 mg) were included. Patients received either of the following FDC for 24 weeks: metoprolol (25 mg), telmisartan (40 mg), and chlorthalidone (12.
A simple one-step chemical method is employed for the successful synthesis of CuO(50%)-ZnO(50%) nanocomposites (NCs) and investigation of their gas sensing properties. The X-ray diffraction studies revealed that these CuO-ZnO NCs display a hexagonal wurtzite-type crystal structure. The average width of 50-100 nm and length of 200-600 nm of the NCs were confirmed by transmission electron microscopic images, and the 1:1 proportion of Cu and Zn composition was confirmed by energy-dispersive spectra, i.
View Article and Find Full Text PDFThree water-soluble tris-heteroleptic ruthenium(II) polypyridyl complexes [Ru(bpy)(phen)(bpg)] (1), [Ru(bpy)(dppz)(bpg)] (2), and [Ru(phen)(dppz)(bpg)] (3) (where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c] phenazine, bpg = 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f] [1,10] phenanthroline-6,13-dione) have been synthesized and characterized. Molecular structures of complexes 1 and 3 are confirmed by single crystal X-ray structure determination. Interaction of complexes 1-3 with DNA is explored by various spectroscopic techniques.
View Article and Find Full Text PDFA self-assembled M6L8 type cage-connected 1D-coordination network of formula {[Ni6(MeSi(3py)3)8Cl9(H2O)2]Cl3·16H2O}∞ (1) was obtained from a 3-pyridyl substituted silane ligand MeSi(3py)3. This complex shows significantly high performance for the electrocatalytic and photocatalytic hydrogen evolution reaction (HER) in water. A maximum turnover number (TON) of 2824 has been observed for photocatalytic HER after 69 h.
View Article and Find Full Text PDFTwo new one-dimensional (1D) coordination polymers (CPs), namely catena-poly[[[aquacadmium(II)]-bis(μ-4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]phenanthroline-6,13-dione)] bis(perchlorate) dihydrate], {[Cd(CHNO)(HO)](ClO)·2HO} or {[Cd(BPG)(HO)](ClO)·2HO}, 1, and catena-poly[[lead(II)-bis(μ-4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]phenanthroline-6,13-dione)] bis(perchlorate) dihydrate], {[Pb(CHNO)](ClO)·2HO} or {[Pb(BPG)](ClO)·2HO}, 2, have been synthesized using bipyridine-glycoluril (BPG; systematic name: 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]phenanthroline-6,13-dione), a urea-fused tecton, in a mixed-solvent system. The Cd ion in 1 is heptacoordinated and the Pb ion in 2 is hexacoordinated, with the Cd ion adopting a pentagonal bipyramidal geometry and the Pb ion adopting a distorted octahedral geometry. Both CPs form infinite linear chain structures which are hydrogen bonded to each other leading to the formation of three-dimensional supramolecular network structures.
View Article and Find Full Text PDFProton conduction ability has been investigated in a new Cu(ii) based coordination polymer (CP), {[Cu(sba)(bpg)(HO)]·5HO} (1), synthesized using the combination of 4-sulfobenzoic acid (4-Hsba) and bipyridine-glycoluril (BPG) ligands. Single crystal X-ray structure determination revealed that 1 features 1D porous channels encapsulating a continuous array of water molecules. Proton conductivity measurements reveal a high conductivity value of 0.
View Article and Find Full Text PDFTwo heteronuclear ruthenium(II)-platinum(II) complexes [Ru(bpy)(BPIMBp)PtCl] (3) and [Ru(phen)(BPIMBp)PtCl] (4), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BPIMBp = 1,4'-bis[(2-pyridin-2-yl)-1H-imidazol-1-ylmethyl]-1,1'-biphenyl, have been designed and synthesized from their mononuclear precursors [Ru(bpy)(BPIMBp)] (1) and [Ru(phen)(BPIMBp)] (2) as multitarget molecules for Alzheimer's disease (AD). The inclusion of the cis-PtCl moiety facilitates the covalent interaction of Ru(II) polypyridyl complexes with amyloid β (Aβ) peptide. These multifunctional complexes act as inhibitors of acetylcholinesterase (AChE), Aβ aggregation, and Cu-induced oxidative stress and protect neuronal cells against Aβ-toxicity.
View Article and Find Full Text PDFThe unidirectional proton coupled electron transfer (PCET) from the excited state of Ru(II) imidazole phenanthroline complex [Ru(bpy) ipH] to 1,4-benzoquinone, was studied by steady-state (SS) and time-resolved (TR) fluorescence and transient absorption (TA) measurements. The pK (9.7) and pK * (8.
View Article and Find Full Text PDFBipyridine glycoluril (BPG), a urea-fused bipyridine tecton, forms a square-pyramidal secondary building unit with copper(ii) which further self-assembles to give a porous hydrogen-bonded complex. This complex displays a high proton conductivity of 4.45 × 10 S cm at 90 °C and 95% relative humidity (RH).
View Article and Find Full Text PDFA series of binuclear ruthenium(II)-polypyridyl complexes of the type [Ru (N-N) (BPIMBp)] , in which N-N is 2,2'-bipyridine (bpy; 1), 1,10-phenanthroline (phen; 2), dipyrido[3,2-d:2',3-f] quinoxaline (dpq; 3), dipyrido[3,2-a:2',3'-c] phenanzine (dppz; 4), and 1,4'-bis[(2-pyridin-2-yl)-1H-imidazol-1-yl)methyl]-1,1'-biphenyl (BPIMBp) is a bridging ligand, have been synthesized and characterized. These complexes are charged (4+) cations and flexible due to the -CH group of the bridging ligand and possess terminal ligands with variable intercalative abilities. The interaction of complexes 1-4 with calf thymus DNA (CT-DNA) was explored by using UV/Vis absorption spectroscopy, steady-state emission, emission quenching with K [Fe(CN) ], ethidium bromide displacement assay, Hoechst displacement assay, and viscosity measurements and revealed a groove-binding mode for all the complexes through a spacer and an intercalative mode for complexes 3 and 4.
View Article and Find Full Text PDFThe synthesis, spectral and electrochemical characterization of the complexes of the type [Ru(NN)2(txbg)](2+) where NN is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido [3,2-d:2',3f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4) which incorporate the tetra-xylene bipyridine glycoluril (txbg) as the ancillary ligand are described in detail. Crystal structures of ligand txbg and complex 2 were solved by single crystal X-ray diffraction. Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM) results indicated that at micromolar concentration all complexes exhibit significant potential of Aβ aggregation inhibition, while the ligand txbg displayed weak activity towards Aβ aggregation.
View Article and Find Full Text PDFA series of Ru(II) arene complexes of mono- and bidentate N-donor ligands with carboxyl or ester groups and chlorido ancillary ligands were synthesised and structurally characterised. The complexes have a distorted tetrahedral piano-stool geometry. The binding interaction was studied with calf thymus DNA (CT-DNA) by absorption titration, viscosity measurement, thermal melting, circular dichroism, ethidium bromide displacement assay and DNA cleavage of plasmid DNA (pBR322), investigated by gel electrophoresis.
View Article and Find Full Text PDFMixed-ligand Cu(ii) complexes of the type [Cu(doxycycline)(L)(H2O)2](NO3)2, where doxycycline = [4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide] and L = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4) have been synthesised and characterised by structural, analytical, and spectral methods. The single-crystal X-ray structures of 1 and 2 exhibited two different geometries, distorted square-pyramidal and octahedral respectively as well as different coordination modes of doxycycline. Complexes 2-4 exhibit prominent plasmid DNA cleavage at significantly low concentrations probably by an oxidative mechanism.
View Article and Find Full Text PDFTwo ruthenium(II) polypyridyl complexes [Ru(phen)3](2+) (1) and [Ru(phen)2(bxbg)](2+) (2) (where phen = 1,10 phenanthroline, bxbg = bis(o-xylene)bipyridine glycoluril) have been evaluated for acetylcholinesterase (AChE) and Amyloid-β peptide (Aβ) aggregation inhibition. Complex 2 exhibits higher potency of AChE inhibition and kinetics and molecular modeling studies indicate that ancillary ligand plays significant role in inhibitory potency exhibited by complex 2. The inhibitory effect of these complexes on Aβ (1-40) aggregation is investigated using Thioflavin T fluorescence and Transmission Electron Microscopy.
View Article and Find Full Text PDFBackground: The development of nontoxic methods of synthesizing nanoparticles is a major step in nanotechnology to allow their application in nanomedicine. The present study aims to biosynthesize silver nanoparticles (AgNPs) using a cell-free extract of Acinetobacter spp. and evaluate their antibacterial activity.
View Article and Find Full Text PDFComplexes of the type [Ru(bxbg)(2) (N-N)](2+), where N-N denotes 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido[3,2-d:2',3-f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), incorporating bis(o-xylene)bipyridine-glycoluril (bxbg) as an ancillary "molecular clip" ligand, have been synthesized and characterized. These ruthenium(II) complexes of bis(o-xylene)bipyridine-glycoluril self-associate in water through specific molecular recognition processes to form polycationic arrays. These arrays containing electrostatic binders as well as intercalator ligands at micromolar doses rapidly condense free DNA into globular nanoparticles of various sizes.
View Article and Find Full Text PDFTwo novel water soluble ruthenium(II) complexes [Ru(bpy)(2)(bqbg)](2+) and [Ru(phen)(2)(bqbg)](2+) have been structurally characterized and their DNA condensation activity, cytotoxicity, and cellular uptake studies of DNA condensates as potential non-viral DNA carriers were evaluated.
View Article and Find Full Text PDFComplexes of the type [Co(pic)(2)(NN)], where pic = picolinate, NN = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4) and 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]-phenanthroline-6,13-dione (bipyridyl-glycoluril) (bpg) (6) have been synthesized and characterized by elemental analysis, IR, UV-vis, NMR and ESI-MS spectroscopy and thermogravimetic analysis (TGA). Their physicochemical properties are compared with previously synthesized complexes, where NN = (H(2)O)(2) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (5). The crystal structures of the complexes 4-6 were solved by single-crystal X-ray diffraction.
View Article and Find Full Text PDFCopper(II) complex [Cu(dpq)(mal)(H(2)O)]·3H(2)O (1) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline, mal = malonato) was synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and single-crystal X-ray crystallography. The single-crystal X-ray structure of 1 reveals a square pyramidal structure, with the dipyrido-[3,2-d:2',3'-f]-quinoxaline and malonato at the equatorial positions and a water molecule at the axial position. The molecule acts as a building block generating a supramolecular three-dimensional metal-organic framework (MOF) encapsulating metal linked acyclic water tetramer.
View Article and Find Full Text PDFFour vanadium(III) complexes of the general formula [V(maltol)(2)(N-N)]ClO(4), where N-N is 2,2'-bipyridine (bpy) (1); 1,10-phenanthroline (phen) (2); dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), have been synthesized and characterized by IR, UV-visible, NMR spectroscopies, and electrospray ionization mass spectra (ESI-MS). The complexes exhibit the typical (1)H NMR spectra for paramagnetic V(III) species. The structures of complexes 1, 2, and 3 were characterized by single crystal X-ray diffraction.
View Article and Find Full Text PDF