Reverse electrowetting-on-dielectric (REWOD)-based energy harvesting has been studied over the last decade as a novel technique of harvesting energy by actuating liquid droplet(s) utilizing applied mechanical modulation. Much prior research in REWOD has relied on planar electrodes, which by its geometry possess a limited surface area. In addition, most of the prior REWOD works have applied a high bias voltage to enhance the output power that compromises the concept of self-powering wearable motion sensors in human health monitoring applications.
View Article and Find Full Text PDFThis paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities. Based on the high surface area reverse electrowetting-on-dielectric (REWOD) energy harvesting technique, mechanical modulation of the liquid generates an AC signal, which is modeled analytically and implemented in Matlab and COMSOL. A constant DC voltage is produced by using a rectifier and a DC-DC converter to power up the motion-sensing read-out circuit.
View Article and Find Full Text PDF