Publications by authors named "Avinash C Srivastava"

Folates are vital cofactors for the regeneration of -adenosyl methionine, which is the methyl source for DNA methylation, protein methylation, and other aspects of one-carbon (C1) metabolism. Thus, folates are critical for establishing and preserving epigenetic programming. Folypolyglutamate synthetase (FPGS) is known to play a crucial role in the maintenance of intracellular folate levels.

View Article and Find Full Text PDF

Background: Downregulation of genes involved in lignin biosynthesis and related biochemical pathways has been used as a strategy to improve biofuel production. Plant C1 metabolism provides the methyl units used for the methylation reactions carried out by two methyltransferases in the lignin biosynthetic pathway: caffeic acid 3--methyltransferase (COMT) and caffeoyl-CoA 3--methyltransferase (CCoAOMT). Mutations in these genes resulted in lower lignin levels and altered lignin compositions.

View Article and Find Full Text PDF

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles.

View Article and Find Full Text PDF

Background: One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes.

View Article and Find Full Text PDF

Roots have both indeterminate and determinate developmental programs. The latter is preceded by the former. It is not well understood how the indeterminacy-to-determinacy switch (IDS) is regulated.

View Article and Find Full Text PDF

Switchgrass (Panicum virgatum L.) is a perennial C4 grass with the potential to become a major bioenergy crop. To help realize this potential, a set of RNA-based resources were developed.

View Article and Find Full Text PDF

Folylpolyglutamate synthetase (FPGS) catalyzes the attachment of glutamate residues to the folate molecule in plants. Three isoforms of FPGS have been identified in Arabidopsis and these are localized in the plastid (AtDFB), mitochondria (AtDFC), and cytosol (AtDFD). We recently determined that mutants in the AtDFB (At5G05980) gene disrupt primary root development in Arabidopsis thaliana seedlings.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a special type of Arabidopsis plant with short roots and root hairs because of a mutant gene that doesn't work right.
  • This gene is important because it helps make a molecule called folylpolyglutamate, which is needed for the plant’s growth and metabolism.
  • When the plant didn't have enough of this molecule, it caused problems with root growth and development, but adding a certain type of folate fixed some of those issues.
View Article and Find Full Text PDF

Background And Aims: AtSUC2 encodes a sucrose/proton symporter that localizes throughout the collection and transport phloem and is necessary for efficient transport of sucrose from source to sink tissues in Arabidopsis thaliana. Plants harbouring homozygous AtSUC2 null alleles accumulate sugar, starch, and anthocyanin in mature leaves, have severely delayed development and stunted growth and, in previous studies, failed to complete their life cycle by producing viable seed.

Methods: An AtSUC2 allele with a T-DNA insertion in the second intron was analysed.

View Article and Find Full Text PDF

Background: AtSUC2 (At1g22710) from Arabidopsis thaliana encodes a phloem-localized sucrose/proton symporter required for efficient photoassimilate transport from source tissues to sink tissues. AtSUC2 plays a key role in coordinating the demands of sink tissues with the output capacity of source leaves, and in maintaining phloem hydrostatic pressure during changes in plant-water balance. Expression and activity are regulated, both positively and negatively, by developmental (sink to source transition) and environmental cues, including light, diurnal changes, photoassimilate levels, turgor pressure, drought and osmotic stress, and hormones.

View Article and Find Full Text PDF

AtSUC2 (At1g22710) encodes a phloem-localized sucrose (Suc)/H(+) symporter necessary for efficient Suc transport from source tissues to sink tissues in Arabidopsis (Arabidopsis thaliana). AtSUC2 is highly expressed in the collection phloem of mature leaves, and its function in phloem loading is well established. AtSUC2, however, is also expressed strongly in the transport phloem, where its role is more ambiguous, and it has been implicated in mediating both efflux and retrieval to and from flanking tissues via the apoplast.

View Article and Find Full Text PDF

In research to date, regulation of the pyrimidine biosynthetic pathway at the level of gene expression has not been shown for wild type Pseudomonas aeruginosa. No repression was observed when uracil was added to the growth medium nor was any derepression seen when Pyr(-) auxotrophs were limited for pyrimidines. Here we show that the addition of uracil to Pseudomonas minimal medium influenced the synthesis of pyrimidine enzymes, while starvation of a pyrimidine knockout mutant (pyrD) elicited derepression of the pyrimidine enzymes.

View Article and Find Full Text PDF