Publications by authors named "Avinash Appukuttan"

The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown.

View Article and Find Full Text PDF

Aims: In contrast to the membrane bound adenylyl cyclases, the soluble adenylyl cyclase (sAC) is activated by bicarbonate and divalent ions including calcium. sAC is located in the cytosol, nuclei and mitochondria of several tissues including cardiac muscle. However, its role in cardiac pathology is poorly understood.

View Article and Find Full Text PDF

Pharmacological modulation of tumor radiosensitivity is a promising strategy for enhancing the outcome of radiotherapy. cAMP signaling plays an essential role in modulating the proliferation and apoptosis of different cell types, including cancer cells. Until now, the regulation of this pathway was restricted to the transmembrane class of adenylyl cyclases.

View Article and Find Full Text PDF

cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC).

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how certain cells in blood vessels (called VSMC) die when there's too much oxygen in a harmful form (called oxidative stress), which can make heart problems worse.
  • They discovered that blocking a specific protein (sAC) or the pathway it is involved in (PKA) helps prevent these cells from dying when exposed to harmful conditions.
  • Their research suggests that a protein called p38 is important in this process, as it helps decide whether the VSMC live or die when faced with oxidative stress.
View Article and Find Full Text PDF

Aims: Apoptosis of vascular smooth muscle cells (VSMC) in advanced atherosclerotic plaques is an important cause of plaque instability. Oxysterols have been suggested as important inducers of apoptosis in VSMC, but the precise mechanism is still poorly understood. Here we aimed to analyse the role of the soluble adenylyl cyclase (sAC).

View Article and Find Full Text PDF

cAMP signaling plays an essential role in modulating the proliferation of different cell types, including cancer cells. Until now, the regulation of this pathway was restricted to the transmembrane class of adenylyl cyclases. In this study, significant overexpression of soluble adenylyl cyclase (sAC), an alternative source of cAMP, was found in human prostate carcinoma, and therefore, the contribution of this cyclase was investigated in the prostate carcinoma cell lines LNCaP and PC3.

View Article and Find Full Text PDF

Aims: Apoptosis of cardiomyocytes significantly contributes to the development of post-ischaemic cardiomyopathy. Although mitochondria have been suggested to play a crucial role in this process, the precise mechanisms controlling the mitochondria-dependent apoptosis in cardiomyocytes under ischaemia/reperfusion are still poorly understood. Here we aimed to analyse the role of the soluble adenylyl cyclase (sAC).

View Article and Find Full Text PDF

Aims: Bicarbonate transport has been shown to participate in apoptosis under ischaemic stress. However, the precise transporting mechanisms involved in ischaemic apoptosis are unknown and were thus the aim of the present study.

Methods And Results: Rat coronary endothelial cells (EC) were exposed to simulated in vitro ischaemia for 2 h, and apoptosis was subsequently determined by chromatin staining and caspase-3 activity analysis.

View Article and Find Full Text PDF

Nucleic acid extraction is a basic requirement in a molecular biology laboratory. In terms of purity and yield, commercial nucleic acid extraction columns are superior; however they are expensive. We report here an efficient strategy to regenerate diverse commercial columns for several rounds without altering the binding capacity of the columns or changing the properties of the nucleic acids purified.

View Article and Find Full Text PDF