Publications by authors named "Avijit K Das"

Article Synopsis
  • The text discusses the importance of detecting non-steroidal anti-inflammatory drugs (NSAIDs) due to their common use and possible effects on health and the environment.
  • Recent advancements in sensing technologies for NSAIDs are explored, particularly focusing on molecular receptors using specialized fluorescent molecules and advanced nanostructured assemblies.
  • The review also addresses the binding mechanisms, challenges, and future directions in developing innovative sensors for rapid and selective NSAID detection, filling a gap in the existing literature on this topic.
View Article and Find Full Text PDF

A multifunctional rhodamine derivative containing azo-salicylaldehyde (BBS) was designed and synthesized as a colorimetric and fluorescence turn-on probe for the selective detection of copper cations (Cu) and hypochlorite anions (OCl) in aqueous media. In the presence of Cu, the probe BBS exhibited turn-on absorption and fluorescence change at 554 nm and 585 nm, respectively. The binding mechanism of BBS with Cu induces the opening of a spirolactam ring in the rhodamine moiety by the formation of a metal-ligand complex, achieving 10-fold enhancement in fluorescence and quantum yield, along with a binding constant of 1 × 10 M and a detection limit of 2.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the recent advancements in Near Infrared (NIR) fluorescence switch-on probes designed for the detection and in cellulo tracking of G-quadruplex and double-stranded DNA (dsDNA). G-quadruplexes, non-canonical DNA structures, play pivotal roles in regulating various biological processes, making them critical targets for therapeutic and diagnostic applications. The unique properties of NIR fluorescence probes, such as deep tissue penetration, minimal photodamage, and low autofluorescence background, offer significant advantages for bioimaging.

View Article and Find Full Text PDF

A fluorescent molecule, pyridine-coupled bis-anthracene (PBA), has been developed for the selective fluorescence turn-on detection of Cu. Interestingly, the ligand PBA also exhibited a red-shifted ratiometric fluorescence response in the presence of water. Thus, a ratiometric water sensor has been utilized as a selective fluorescence turn-on sensor for Cu, achieving a 10-fold enhancement in the fluorescence and quantum yield at 446 nm, with a lower detection limit of 0.

View Article and Find Full Text PDF

Fluorescent and colorimetric chemosensors for selective detection of various biologically important analytes have been widely applied in different areas such as biology, physiology, pharmacology, and environmental sciences. The research area based on fluorescent chemosensors has been in existence for about 150 years with the development of large number of fluorescent chemosensors for selective detection of cations as metal ions, anions, reactive species, neutral molecules and different gases etc. Despite the progress made in this field, several problems and challenges still exist.

View Article and Find Full Text PDF

The inhibitory action of Schiff base complexes of 3d metals against the urease enzyme is well explored in the scientific community. However, the ability of such complexes in mimicking active metallobiosites of urease enzymes, possessing ureolytic behavior, still remains unexplored. With this aim firstly, two Zn(II)-complexes (PPR-HMB-Zn and PZ-HMB-Zn) have been developed from two different Schiff base ligands (HL1 = 2-(()-(2-(piperidin-1-yl)ethylimino)methyl)-5-methylphenol and HL2 = 2-(()-(2-(piperizin-1-yl)ethylimino)methyl)-5-methylphenol) and structurally characterized using single crystal XRD.

View Article and Find Full Text PDF

A novel dual-mode viscosity-sensitive and AIE-active fluorescent chemosensor based on the naphthalene coupled pyrene (NCP) moiety was designed and synthesized for the selective detection of OCl and Cu. In non-viscous media, NCP exhibited weak fluorescence; however, with an increase in viscosity using various proportions of glycerol, the fluorescence intensity was enhanced to 461 nm with a 6-fold increase in fluorescence quantum yields, which could be utilized for the quantitative determination of viscosity. Interestingly, NCP exhibited novel AIE characteristics in terms of size and growth in HO-CHCN mixtures with high water contents and different volume percentage of water, which was investigated using fluorescence, DLS study and SEM analysis.

View Article and Find Full Text PDF

Owing to the biological significance of various amino acids, developing accurate and cost-effective sensing techniques for the selective detection of amino acids has recently attracted growing interest. This review discusses the recent advancements of chemosensors in the selective detection of only essential amino acids out of a total of twenty amino acids, which have been applied in chemosensing research, and the mechanism of their action. The focus is directed towards the detection of the most important essential amino acids, like leucine, threonine, lysine, histidine, tryptophan and methionine, since isoleucine and valine are yet to be explored in regard to chemosensing.

View Article and Find Full Text PDF

Fluorescein coupled with 3-(aminomethyl)-4,6-dimethylpyridin-2(1)-one (FAD) was synthesized for the selective recognition of Zn over other interfering metal ions in acetonitrile/aqueous buffer (1 : 1). Interestingly, there was a significant fluorescence enhancement of FAD in association with Zn at 426 nm by strong chelation-induced fluorescence enhancement (CHEF) without interrupting the cyclic spirolactam ring. A binding stoichiometric ratio of 1 : 2 for the ligand FAD with metal Zn was proven by a Jobs plot.

View Article and Find Full Text PDF

The combination of styryl dye properties with the acidity and strong photoacidity of the 2,2'-[(1''-hydroxy-4''-methyl-(E)-2'',6''-phenylene)]-bisquinolizinium enables the detection of DNA by distinct absorption and emission color changes and the fluorimetric detection of DNA in cells with epifluorescence and confocal fluorescence microscopy.

View Article and Find Full Text PDF

(E)-2-[1'-((Diphenylamino)styryl)quinolizinium (3a) and 2,2'-{(phenylimino)-bis[(E)-1'',1'''-styryl]}-bis[quinolizinium] (3b) were synthesized, and their interactions with duplex DNA and quadruplex DNA were investigated with a particular focus on their ability to operate as DNA-sensitive fluorescent probes. Due to the significantly different size and steric demand of these quinolizinium derivatives they exhibit different binding modes. Thus, 3a intercalates into duplex DNA and binds through π stacking to quadruplex DNA, whereas 3b favours groove binding to both DNA forms.

View Article and Find Full Text PDF

H2S is shown, for the first time, to play an extraordinary dual role due to its nucleophilicity and reducing property with our single chemosensor, PND [4-(piperidin-1-yl) naphthalene-1,2-dione]. The initial nucleophilic attack via Michael addition (a lower concentration of H2S, blue fluorescence) is followed by the reduction of the 1,2-diketo functionality (a higher concentration of H2S, green fluorescence). This chemosensor, which also shows biological response, is remarkably effective in sensing the same analyte (H2S) at its different concentrations in a relay pathway via a fluorescence "off-on-on" mechanism, and this is also supported by DFT calculation and Cyclic voltammograms.

View Article and Find Full Text PDF

Our designed and synthesized chemosensor naphthalene based chromenyl derivative (NAC) [1-(3-hydroxy-3 methyl-3H-benzo[f]chromen-2-yl) ethanone] has been used for fast (<30 s, DL = 0.22 ppb) and selective detection of N2H4 by a new way via the chromenyl ring opening followed by the pyrazole ring formation giving a strong blue fluorescence. The DFT study and the real application in different water samples along with the dipstick method in low cost devices have also been performed here.

View Article and Find Full Text PDF

A new zinc(ii) complex with a condensed hydroxynaphthyl pyridine (SPHN) as the coordinated ligand has been synthesized for the selective recognition of pyrophosphate (PPi) over other anions including phosphate in a mixed aqueous solution. The fluorescence enhancement of SPHN in association with Zn(2+) ions is quenched in the presence of intracellular pyrophosphate. This phenomenon is utilized in the construction of a logic gate.

View Article and Find Full Text PDF

By employing the oxidation property of hypochlorite (OCl(-)), a novel rhodamine-based hydrazide of the chiral acid ((S)-(-)-2-pyrrolidone-5-carboxylic acid) (RHHP) was designed and synthesized for detection of OCl(-) absolutely in aqueous medium at nanomolar level. The structure of the chiral sensor was also proved by the X-ray crystallography. The bioactivity and the application of the probe for detection of OCl(-) in natural water system have been demonstrated.

View Article and Find Full Text PDF

A spirobenzopyran-quinoline (SBPQ) based sensor was synthesized which selectively detects trivalent ions viz. Al(3+), Fe(3+) and Cr(3+) through a fluorescence turn on signal in the red region (~675 nm) with the detection limit in the order of 10(-8) M. The potentiality of the probe was confirmed by employing it for fluorescence bio-imaging with Al(3+) in three different types of live-cells.

View Article and Find Full Text PDF

A novel colorimetric and fluorescent chemosensor based on 7-(diethylamino)-3-(pyrimidin-4-yl)-2H-chromen-2-one (PYC) has been designed and synthesized for the detection of Hg(2+) in the presence of other competing metals in mixed aqueous media. The PYC exhibits naked eye color change from green to red, and the fluorescence color changes from yellowish green to light orange with Hg(2+). It also shows a red shift in wavelength of about 80 nm in absorption spectra.

View Article and Find Full Text PDF

A new spirobenzopyran derivative (SPNH) was designed and synthesized which was applied in simultaneous colorimetric and NIR fluorescence detections for Cr(3+). This spirobenzopyran receptor is normally colorless in aqueous organic media but the formation of merocyanine occurs by Cr(3+) showing a yellow color. Here the formation of yellow color in UV-vis spectra and strong NIR fluorescence emission at 675 nm makes SPNH a good sensor for Cr(3+) ion.

View Article and Find Full Text PDF

A new rhodamine based chemosensor, cyano-rhodamine, has been designed and synthesized with a green approach which shows a specific 'C-CN' bond breaking with the action of the Pd(2+) ion to produce the specific color and fluorescence of rhodamine 6G itself in solution and in HeLa cells.

View Article and Find Full Text PDF

A new "naked-eye" and ratiometric fluorescent zinc sensor (TAQ) of carboxamidoquinoline with 2-chloro-N-(quinol-8-yl)-acetamide as a receptor was designed and synthesized. The sensor shows good water solubility and high selectivity for sensing; about a 15-fold increase in fluorescence quantum yield and a 100 nm red-shift of fluorescence emission upon binding Zn²⁺ in aqueous HEPES buffer solution are observed. The human lung cancer cell line (A549) activity is also demonstrated.

View Article and Find Full Text PDF

In this study, we have synthesized a simple Schiff base type isophthaloyl salicylaldehyde hydrazone (ISH) moiety which selectively detects Al(III) and PPi with a fluorescence enhancement at two different wavelengths in aqueous solution. The sensing phenomenon is also reversible and thus the sensor beautifully mimics logic gates (INHIBIT and EXOR gates).

View Article and Find Full Text PDF

For ratiometric "naked eye" detection of CN(-), an ESIPT exhibiting benzothiazole receptor (BHI) is designed having one aldehyde group ortho and the other aldehyde para to the OH group respectively. Due to RAHBs, the ortho aldehyde group is highly reactive undergoing nucleophilic cyanide addition selectively, which hampered ESIPT. This is also supported by DFT and TD-DFT calculations.

View Article and Find Full Text PDF

A new rhodamine-quinoline based dyad has been synthesized. It shows a highly selective response to Cd(2+) in the presence of other competing metal ions in aqueous media (pH = 7.1).

View Article and Find Full Text PDF