We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of . Virulence attenuation of -disrupted strains was attributed to susceptibility of Δ strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the -disrupted and wild type parental strains under oxidative stress.
View Article and Find Full Text PDFWe recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use.
View Article and Find Full Text PDFAnthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout.
View Article and Find Full Text PDFPneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y.
View Article and Find Full Text PDFWe report the draft whole-genome sequence of the nonproteolytic Bacillus anthracis V770-NP1-R strain. Compared to those of other B. anthracis strains, the genome exhibits unique mutations in multiple targets potentially affecting proteolytic functions.
View Article and Find Full Text PDFRecently we described an unbiased bacterial whole-genome immunoinformatic analysis aimed at selection of potential CTL epitopes located in "hotspots" of predicted MHC-I binders. Applying this approach to the proteome of the facultative intra-cellular pathogen Francisella tularensis resulted in identification of 170 novel CTL epitopes, several of which were shown to elicit highly robust T cell responses. Here we demonstrate that by DNA immunization using a short DNA fragment expressing six of the most prominent identified CTL epitopes a potent and specific CD8+ T cell responses is being induced, to all encoded epitopes, a response not observed in control mice immunized with the DNA vector alone Moreover, this CTL-specific mediated immune response prevented disease development, allowed for a rapid clearance of the bacterial infection and provided complete protection against lethal challenge (10LD50) with F.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2013
Bacterial infection of the lungs triggers a swift innate immune response that involves the production of cytokines and chemokines that promote recruitment of immune cells from the bone marrow (BM) into the infected tissue and limit the ability of the pathogen to replicate. Recent in vivo studies of pneumonic plague in animal models indicate that the pulmonary pro-inflammatory response to airway infection with Yersinia pestis is substantially delayed in comparison to other pathogens. Consequently, uncontrolled proliferation of the pathogen in the lungs is observed, followed by dissemination to internal organs and death.
View Article and Find Full Text PDFProtective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo.
View Article and Find Full Text PDFThis study examines the efficacy, bacterial load, and humoral response of extensively delayed ciprofloxacin or doxycycline treatments following airway exposure of mice to Francisella tularensis subsp. holarctica (strain LVS) or to the highly virulent F. tularensis subsp.
View Article and Find Full Text PDFBackground: In an event of a smallpox outbreak in humans, the window for efficacious treatment by vaccination with vaccinia viruses (VACV) is believed to be limited to the first few days post-exposure (p.e.).
View Article and Find Full Text PDFThe virulence of Bacillus anthracis, the causative agent of anthrax, stems from its antiphagocytic capsule, encoded by pXO2, and the tripartite toxins encoded by pXO1. The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play major roles in pathogenicity. We tested this assumption by a systematic study of mutants with combined deletions of the pag, lef, and cya genes, encoding protective antigen (PA), lethal factor (LF), and edema factor (EF), respectively.
View Article and Find Full Text PDFDeciphering the cellular immunome of a bacterial pathogen is challenging due to the enormous number of putative peptidic determinants. State-of-the-art prediction methods developed in recent years enable to significantly reduce the number of peptides to be screened, yet the number of remaining candidates for experimental evaluation is still in the range of ten-thousands, even for a limited coverage of MHC alleles. We have recently established a resource-efficient approach for down selection of candidates and enrichment of true positives, based on selection of predicted MHC binders located in high density "hotspots" of putative epitopes.
View Article and Find Full Text PDFPlague, which is initiated by Yersinia pestis infection, is a fatal disease that progresses rapidly and leads to high mortality rates if not treated. Antibiotics are an effective plague therapy, but antibiotic-resistant Y. pestis strains have been reported and therefore alternative countermeasures are needed.
View Article and Find Full Text PDFWe demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B.
View Article and Find Full Text PDFThe cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.
View Article and Find Full Text PDFThe lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon.
View Article and Find Full Text PDFTwo alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr).
View Article and Find Full Text PDFBackground: Francisella tularensis is an intercellular bacterium often causing fatal disease when inhaled. Previous reports have underlined the role of cell-mediated immunity and IFNgamma in the host response to Francisella tularensis infection.
Methodology/principal Findings: Here we provide evidence for the involvement of IL-17A in host defense to inhalational tularemia, using a mouse model of intranasal infection with the Live Vaccine Strain (LVS).
We have shown previously that conjugation of polyethylene glycol (PEG) chains to recombinant human acetylcholinesterase (rHuAChE) results in the extension of its residence time in the circulation of mice and monkeys [1,2]. By profiling the pharmacokinetic behavior of an array of well-defined hypolysine human mutant AChE molecules following PEGylation, we now determine that the duration of these enzyme forms in the circulation of rhesus macaques correlates with their number of appended PEG moieties, and is influenced by the actual location of the PEG chains at the molecule surface, as well. These findings, which concur with those we have previously established in mice, indicate that a common set of rules dictates the circulatory fate of PEGylated HuAChEs in rodents and non-human primates.
View Article and Find Full Text PDFBacillus anthracis is a Gram-positive, spore-forming bacterium representing the etiological cause of anthrax, a rare lethal disease of animals and humans. Development of anthrax countermeasures has gained increasing attention owing to the potential use of B. anthracis spores as a bioterror weapon.
View Article and Find Full Text PDFYersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2009
A search for bacterium-specific biomarkers in peripheral blood following infection with Bacillus anthracis was carried out with rabbits, using a battery of specific antibodies generated by DNA vaccination against 10 preselected highly immunogenic bacterial antigens which were identified previously by a genomic/proteomic/serologic screen of the B. anthracis secretome. Detection of infection biomarkers in the circulation of infected rabbits could be achieved only after removal of highly abundant serum proteins by chromatography using a random-ligand affinity column.
View Article and Find Full Text PDFAn important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica Oratio8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence.
View Article and Find Full Text PDFThe therapeutic potential of human vaccinia immunoglobulin (VIG) in orthopoxvirus infection was examined using two mouse models for human poxvirus, based on Ectromelia virus and Vaccinia Western Reserve (WR) respiratory infections. Despite the relatively fast clearance of human VIG from mice circulation, a single VIG injection protected immune-competent mice against both infections. Full protection against lethal Ectromelia virus infection was achieved by VIG injection up to one day post-exposure, and even injection of VIG two or three days post-infection conferred solid protection (60-80%).
View Article and Find Full Text PDF