Publications by authors named "Avi Ring"

The major function of compounds with an oxime moiety attached to a quarternary nitrogen pyridinium ring is to reactivate acetylcholinesterase inhibited by organophosphorus agent (OP). However, other oxime mechanisms (e.g.

View Article and Find Full Text PDF

N-methyl-d-aspartate receptors (NMDAR) are widely expressed in the brain. GluN2B subunit-containing NMDARs has recently attracted significant attention as potential pharmacological targets, with emphasis on the functional properties of allosteric antagonists. We used primary cultures from chicken embryo forebrain (E10), expressing native GluN2B-containing NMDA receptors as a novel model system.

View Article and Find Full Text PDF

The neuropeptides, orexin A and orexin B (also known as hypocretins), are produced in hypothalamic neurons and belong to ligands for orphan G protein-coupled receptors. Generally, the primary role of orexins is to act as excitatory neurotransmitters and regulate the sleep process. Lack of orexins may lead to sleep disorder narcolepsy in mice, dogs, and humans.

View Article and Find Full Text PDF

Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase.

View Article and Find Full Text PDF

Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis.

View Article and Find Full Text PDF

There is great interest in testing neuroprotectants which inhibit the neurodegeneration that results from excessive activation of N-methyl-D-aspartate (NMDA) receptors. As an alternative to in vivo testing in animal models, we demonstrate here the use of a complex in vitro model to compare the efficacy and toxicity of NMDA receptor inhibitors. Organotypic hippocampal slice cultures were used to compare the effectiveness of the Alzheimer's disease drug, memantine, the Parkinson's disease drug, procyclidine, and the novel neuroprotectant, gacyclidine (GK11), against NMDA-induced toxicity.

View Article and Find Full Text PDF

Although the brain utilizes glucose for energy production, individual brain cells may to some extent utilize substrates derived from glucose. Thus, it has been suggested that neurons consume extracellular lactate during synaptic activity. However, the precise role of lactate for fueling neuronal activity is still poorly understood.

View Article and Find Full Text PDF

Introduction: Fluorescence imaging techniques are valuable tools for the pharmacological characterization of CNS drugs. Dissected cerebellar granule neurons (CGN) are an important model system in the study of mechanisms of excitotoxicity, glutamate receptors and transporters. Widely applied techniques use fluorescent probes loaded in neural cells cultured on glass supports.

View Article and Find Full Text PDF

Tetrabromobisphenol-A (TBBPA) is one of the worlds most widely used brominated flame retardant. The present study reports effects of TBBPA on primary cultures of cerebellar granule cells (CGC). Using the trypan blue exclusion assay, we show that TBBPA induces death of CGC at low micro molar concentrations.

View Article and Find Full Text PDF

Previously, increased formation of reactive oxygen species (ROS) has been demonstrated in cultured rat cerebellar granule cells (CGCs) exposed to t-butylcyclohexane, n-decane, and n-butylbenzene (Dreiem et al. Relationship between lipophilicity of C6-10 hydrocarbon solvents and their ROS-inducing potency in rat cerebellar granule cells. Neurotoxicology 2002;23:701-9).

View Article and Find Full Text PDF

Receptor desensitization of G protein-coupled receptors (GPCRs), which occurs during short-term (seconds to minutes) exposure of cells to agonists, is mediated by phosphorylation and receptor endocytosis. Recycling of the receptors is a requisite for resensitization of the response. The mechanisms that attenuate signaling by GPCRs are of considerable importance to regulation of intercellular signaling and maintenance of their ability to respond to agonists over time.

View Article and Find Full Text PDF