The tomography of photonic quantum states is key in quantum optics, impacting quantum sensing, computing, and communication. Conventional detectors are limited in their temporal and spatial resolution, hampering high-rate quantum communication and local addressing of photonic circuits. Here, we propose to utilize free electron-photon interactions for quantum state tomography, introducing electron homodyne detection with potential for femtosecond-temporal and nanometer-spatial resolutions.
View Article and Find Full Text PDFWe present a mode-locked semiconductor laser oscillator that emits few picosecond pulses (5-8ps at a repetition rate of 379MHz and wavelength of 1064nm) with record peak power (112W) and pulse energy (0.5nJ) directly out of the oscillator (with no amplifier). To achieve this high power performance we employ a high-current broad-area, spatially multi-mode diode amplifier (0.
View Article and Find Full Text PDFThe coherent dynamics in networks of coupled oscillators is of great interest in wave-physics since the coupling produces various dynamical effects, such as coherent energy exchange (beats) between the oscillators. However, it is common wisdom that these coherent dynamics are transients that quickly decay in active oscillators (e.g.
View Article and Find Full Text PDFDissipative solitons are fundamental wave-pulses that preserve their form in the presence of periodic loss and gain. The canonical realization of dissipative solitons is Kerr-lens mode locking in lasers, which delicately balance nonlinear and linear propagation in both time and space to generate ultrashort optical pulses. This linear-nonlinear balance dictates a unique pulse energy, which cannot be increased (say by elevated pumping), indicating that excess energy is expected to be radiated in the form of dispersive or diffractive waves.
View Article and Find Full Text PDFWe analyze theoretically and experimentally cases of asymmetric detection, stimulation, and loss within a quantum nonlinear interferometer of entangled pairs. We show that the visibility of the SU(1,1) interference directly discerns between loss on the measured mode (signal) and the conjugated mode (idler). This asymmetry also affects the phase sensitivity of the interferometer, where coherent seeding is shown to mitigate losses that are suffered by the conjugated mode; therefore increasing the maximum threshold of loss that permits sub-shot-noise phase detection.
View Article and Find Full Text PDFWe study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution of the Ising model.
View Article and Find Full Text PDFPassive mode-locking relies critically on a saturable loss mechanism to form ultrashort pulses. However, in Kerr-lens mode-locking (KLM), no actual absorption takes place, but rather losses appear due to diffraction, and actual light must escape the cavity. The Kerr-lens effect works to generate through diffraction an effective instantaneous saturable absorber that depends delicately on the interplay between the spatial and temporal profiles of the pulse.
View Article and Find Full Text PDFMode locking in lasers is a collective effect, where due to a weak coupling a large number of frequency modes lock their phases to oscillate in unison, forming an ultrashort pulse in time. We demonstrate an analogous collective effect in coupled parametric oscillators, which we term "pairwise mode locking," where many pairs of modes with twin frequencies (symmetric around the center carrier) oscillate simultaneously with a locked phase sum, while the phases of individual modes remain undefined. Thus, despite being broadband and multimode, the emission is not pulsed and lacks first-order coherence, while possessing a very high degree of second-order coherence.
View Article and Find Full Text PDFCoupled parametric oscillators were recently employed as simulators of artificial Ising networks, with the potential to solve computationally hard minimization problems. We demonstrate a new dynamical regime within the simplest network-two coupled parametric oscillators, where the oscillators never reach a steady state, but show persistent, full-scale, coherent beats, whose frequency reflects the coupling properties and strength. We present a detailed theoretical and experimental study and show that this new dynamical regime appears over a wide range of parameters near the oscillation threshold and depends on the nature of the coupling (dissipative or energy preserving).
View Article and Find Full Text PDFHomodyne measurement is a corner-stone method of quantum optics that measures the quadratures of light-the quantum optical analog of the canonical position and momentum. Standard homodyne, however, suffers from a severe bandwidth limitation: while the bandwidth of optical states can span many THz, standard homodyne is inherently limited to the electronically accessible MHz-to-GHz range, leaving a dramatic gap between relevant optical phenomena and the measurement capability. We demonstrate a fully parallel optical homodyne measurement across an arbitrary optical bandwidth, effectively lifting this bandwidth limitation completely.
View Article and Find Full Text PDFWe present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g.
View Article and Find Full Text PDFPhys Rev Lett
February 2016
Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state.
View Article and Find Full Text PDFA key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ∼80 dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior.
View Article and Find Full Text PDFWe explore mode locked operation of a Ti:Sapphire laser with enhanced Kerr nonlinearity, where the threshold for pulsed operation can be continuously tuned down to the threshold for continuous-wave (CW) operation, and even below it. At the point of equality, even though a CW solution does not exist, pulsed oscillation can be realized directly from zero CW oscillation. We experimentally investigate the evolution of the mode locking mechanism towards this point and beyond it, and provide a qualitative theoretical model to explain the results.
View Article and Find Full Text PDFThe gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a 'winner takes all' manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation.
View Article and Find Full Text PDFWe propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses, thus forming a generalized adiabatic passage via a wave packet. We study piecewise stimulated Raman adiabatic passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possible.
View Article and Find Full Text PDFWe present experiments demonstrating high-resolution and wide-bandwidth coherent control of a four-level atomic system in a diamond configuration. A femtosecond frequency comb is used to excite a specific pair of two-photon transitions in cold 87Rb. The optical-phase-sensitive response of the closed-loop diamond system is studied by controlling the phase of the comb modes with a pulse shaper.
View Article and Find Full Text PDFWe describe a novel non-linear detection method for optical tomography that does not rely on detection of interference fringes and is free of optical background. The method exploits temporally coherent broadband illumination such as ultrashort pulses, and a non-linear two-photon detection process such as sum-frequency generation (SFG). At the detection stage, the reference beam and the sample beam are mixed in a thick non-linear crystal, and only the mixing term, which is free of optical background, is detected.
View Article and Find Full Text PDFWe present a general and highly efficient scheme for performing narrow-band Raman transitions between molecular vibrational levels using a coherent train of weak pump-dump pairs of shaped ultrashort pulses. The use of weak pulses permits an analytic description within the framework of coherent control in the perturbative regime, while coherent accumulation of many pulse pairs enables near unity transfer efficiency with a high spectral selectivity, thus forming a powerful combination of pump-dump control schemes and the precision of the frequency comb. Simulations verify the feasibility and robustness of this concept, with the aim to form deeply bound, ultracold molecules.
View Article and Find Full Text PDFCoherent-control schemes to manipulate weak-field interactions are generally invalid at stronger fields, since strong-field interactions are accompanied by level power broadenings and level shifts that usually elude simple analytical treatments. Here we show that a broad subgroup of weak-field solutions (those with real fields, i.e.
View Article and Find Full Text PDFWe experimentally demonstrate shaping of the two-photon wave function of entangled-photon pairs, utilizing coherent pulse-shaping techniques. By performing spectral-phase manipulations we tailor the second-order correlation function of the photons exactly like a coherent ultrashort pulse. To observe the shaping we perform sum-frequency generation with an ultrahigh flux of entangled photons.
View Article and Find Full Text PDFWe experimentally demonstrate sum-frequency generation with entangled photon pairs, generating as many as 40,000 photons per second, visible even to the naked eye. The nonclassical nature of the interaction is exhibited by a linear intensity dependence of the nonlinear process. The key element in our scheme is the generation of an ultrahigh flux of entangled photons while maintaining their nonclassical properties.
View Article and Find Full Text PDFThe smallest spot in optical lithography and microscopy is generally limited by diffraction. Quantum lithography, which utilizes interference between groups of N entangled photons, was recently proposed to beat the diffraction limit by a factor N. Here we propose a simple method to obtain N photons interference with classical pulses that excite a narrow multiphoton transition, thus shifting the "quantum weight" from the electromagnetic field to the lithographic material.
View Article and Find Full Text PDFWe experimentally demonstrate two-photon absorption with broadband down-converted light (squeezed vacuum). Although incoherent and exhibiting the statistics of a thermal noise, broadband down-converted light can induce two-photon absorption with the same sharp temporal behavior as femtosecond pulses, while exhibiting the high spectral resolution of the narrow band pump laser. Using pulse-shaping methods, we coherently control two-photon absorption in rubidium, demonstrating spectral and temporal resolutions that are 3-5 orders of magnitude below the actual bandwidth and temporal duration of the light itself.
View Article and Find Full Text PDF