According to the International Diabetes Federation, approximately 463 million adults live with diabetes mellitus (DM), a number projected to increase to 700 million by 2045; a diabetic foot ulcer (DFU) will occur in about 15% of that population. Multiple factors contribute to the development of those wounds including diabetic peripheral neuropathy, biomechanical imbalances, trauma, and peripheral vascular disease. In addition, 85% of all lower limb amputations in patients with diabetes are preceded by a DFU resulting in significant biomechanical challenges for these patients, many of who never become ambulatory again.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients.
View Article and Find Full Text PDFBlood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 (hBM34) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages.
View Article and Find Full Text PDFVascular pathology, including blood-CNS barrier (B-CNS-B) damage via endothelial cell (EC) degeneration, is a recently recognized hallmark of Amyotrophic Lateral Sclerosis (ALS) pathogenesis. B-CNS-B repair may be a new therapeutic approach for ALS. This study aimed to determine effects of transplanted unmodified human bone marrow CD34+ (hBM34+) cells into symptomatic G93A mice towards blood-spinal cord barrier (BSCB) repair.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the brain and spinal cord. Treatment development for ALS is complicated by complex underlying disease factors. Areas covered: Numerous tested drug compounds have shown no benefits in ALS patients, although effective in animal models.
View Article and Find Full Text PDFWe previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO.
View Article and Find Full Text PDF