The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented.
View Article and Find Full Text PDFMost dielectrophoretic (DEP) separations of cells, nanoparticles, and other entities are carried out on microelectrode arrays or in microfluidic device formats. Less work has been directed at designing pipette-type formats that would allow dipping into and recovering specific analytes from samples in microtiter plate formats. In order to address this important area, we have fabricated micropipette tip devices containing a 2% agarose gel plug, a buffer chamber, and platinum electrode as the DEP collection device, to be used in combination with separate sample wells that contain a circular gold electrode.
View Article and Find Full Text PDFConventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual.
View Article and Find Full Text PDFBackground: Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a "liquid biopsy" may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications.
View Article and Find Full Text PDFCommon epifluorescent microscopy lacks the sensitivity to detect low levels of analytes directly in clinical samples, such as drug delivery nanoparticles or disease related DNA biomarkers. Advanced systems such as confocal microscopes may improve detection, but several factors limit their applications. This study now demonstrates that combining an epifluorescent microscope with a dielectrophoretic (DEP) microelectrode array device enables the detection of nanoparticles and DNA biomarkers at clinically relevant levels.
View Article and Find Full Text PDFDielectrophoretic (DEP) microarray devices allow important cellular nanoparticulate biomarkers and virus to be rapidly isolated, concentrated, and detected directly from clinical and biological samples. A variety of submicron nanoparticulate entities including cell free circulating (cfc) DNA, mitochondria, and virus can be isolated into DEP high-field areas on microelectrodes, while blood cells and other micron-size entities become isolated into DEP low-field areas between the microelectrodes. The nanoparticulate entities are held in the DEP high-field areas while cells are washed away along with proteins and other small molecules that are not affected by the DEP electric fields.
View Article and Find Full Text PDFThe ability to effectively detect disease-related DNA biomarkers and drug delivery nanoparticles directly in blood is a major challenge for viable diagnostics and therapy monitoring. A DEP method has been developed which allows the rapid isolation, concentration and detection of DNA and nanoparticles directly from human and rat whole blood. Using a microarray device operating at 20 V peak-to-peak and 10 kHz, a wide range of high molecular weight (HMW)-DNA and nanoparticles were concentrated into high-field regions by positive DEP, while the blood cells were concentrated into the low-field regions by negative DEP.
View Article and Find Full Text PDF