Previous studies by our laboratory have demonstrated that the mu opioid receptor antagonist, CTAP, blocks the rewarding effects of cocaine when it is injected directly into the nucleus accumbens or ventral tegmental area (VTA). This finding suggests that cocaine is causing the release of endogenous opioid peptides which activate mu opioid receptors within the nucleus accumbens and VTA. The purpose of the present study was to characterize the dose-response and time-course of mu receptor occupancy following systemic cocaine administration and to determine if release of endogenous opioids by cocaine is mediated by activation of D1 or D2 dopamine receptors.
View Article and Find Full Text PDFBackground: Tissue factor (TF) expression on islets can result in an instant blood-mediated inflammatory reaction (IBMIR) that contributes to early islet loss. We tested whether peritransplant protection of islets from IBMIR with a monoclonal anti-TF antibody (CNTO859) would enhance engraftment in our nonhuman primate marginal mass model.
Methods: Each of six pairs of cynomolgus monkeys (CM) with streptozotocin-induced diabetes was closely matched for metabolic control and was transplanted with 5,000 IEQ/kg allogeneic, ABO-compatible islets from the same donor under the cover of steroid-free immunosuppression.
Psychopharmacology (Berl)
December 2007
Rationale: Considerable evidence suggests that the endogenous opioid system plays a role in mediating the behavioral effects of psychostimulants. Opioidergic drugs have been shown to have profound effects on cocaine-induced behavioral sensitization and conditioned reward. However, the role specifically of the mu opioid receptor in this regard is unclear as most previous pharmacological studies have used nonselective opioid receptor ligands.
View Article and Find Full Text PDF