Background: Accumulation of tau in synapses in the early stages of Alzheimer's disease (AD) has been shown to cause synaptic damage, synaptic loss, and the spread of tau pathology through trans-synaptically connected neurons. Moreover, synaptic loss correlates with a decline in cognitive function, providing an opportunity to investigate therapeutic strategies to target synapses and synaptic tau to rescue or prevent cognitive decline in AD. One of the promising synaptic targets is the 5-HT4 serotonergic receptor present postsynaptically in the brain structures involved in the memory processes.
View Article and Find Full Text PDFAccumulation of tau in synapses in Alzheimer’s disease (AD) has been shown to cause synaptic damage, synaptic loss, and the spread of pathology through synaptically connected neurons. Synaptic loss correlates with a decline in cognition, providing an opportunity to investigate strategies to target synaptic tau to rescue or prevent cognitive decline. One of the promising synaptic targets is the 5-HT4 receptor present post-synaptically in the brain areas involved in the memory processes.
View Article and Find Full Text PDFAccumulation of pathological tau in synapses has been identified as an early event in Alzheimer's disease (AD) and correlates with cognitive decline in patients with AD. Tau is a cytosolic axonal protein, but under disease conditions, tau accumulates in postsynaptic compartments and presynaptic terminals, due to missorting within neurons, transsynaptic transfer between neurons, or a failure of clearance pathways. Using subcellular fractionation of brain tissue from rTg4510 tau transgenic mice with tauopathy and human postmortem brain tissue from patients with AD, we found accumulation of seed-competent tau predominantly in postsynaptic compartments.
View Article and Find Full Text PDFCultured rodent brain slices are useful for studying the cellular and molecular behavior of neurons and glia in an environment that maintains many of their normal in vivo interactions. Slices obtained from a variety of transgenic mouse lines or use of viral vectors for expression of fluorescently tagged proteins or reporters in wild type brain slices allow for high-resolution imaging by fluorescence microscopy. Although several methods have been developed for imaging brain slices, combining slice culture with the ability to perform repetitive high-resolution imaging of specific cells in live slices over long time periods has posed problems.
View Article and Find Full Text PDF