Publications by authors named "Avdesh Mishra"

SUMOylation is an essential post-translational modification system with the ability to regulate nearly all aspects of cellular physiology. Three major paralogues SUMO1, SUMO2 and SUMO3 form a covalent bond between the small ubiquitin-like modifier with lysine residues at consensus sites in protein substrates. Biochemical studies continue to identify unique biological functions for protein targets conjugated to SUMO1 versus the highly homologous SUMO2 and SUMO3 paralogues.

View Article and Find Full Text PDF

Protein molecules show varying degrees of flexibility throughout their three-dimensional structures. The flexibility is determined by the fluctuations in torsion angles, specifically phi (φ) and psi (ψ), which define the protein backbone. These angle fluctuations are derived from variations in backbone torsion angles observed in different models.

View Article and Find Full Text PDF

COVID-19 has caused an epidemic in the entire world and it is caused by the novel virus SARS-COV-2. In severe conditions, this virus can cause a critical lung infection or viral pneumonia. To administer the correct treatment to patients, COVID-19 testing is important for diagnosing and determining patients who are infected with COVID-19, as opposed to those infected with other bacterial or viral infections.

View Article and Find Full Text PDF

Completing the genotype-to-phenotype map requires rigorous measurement of the entire multivariate organismal phenotype. However, phenotyping on a large scale is not feasible for many kinds of traits, resulting in missing data that can also cause problems for comparative analyses and the assessment of evolutionary trends across species. Measuring the multivariate performance phenotype is especially logistically challenging, and our ability to predict several performance traits from a given morphology is consequently poor.

View Article and Find Full Text PDF

Identification of RNA-binding proteins (RBPs) that bind to ribonucleic acid molecules is an important problem in Computational Biology and Bioinformatics. It becomes indispensable to identify RBPs as they play crucial roles in post-transcriptional control of RNAs and RNA metabolism as well as have diverse roles in various biological processes such as splicing, mRNA stabilization, mRNA localization, and translation, RNA synthesis, folding-unfolding, modification, processing, and degradation. The existing experimental techniques for identifying RBPs are time-consuming and expensive.

View Article and Find Full Text PDF

Motivation: Transposable Elements (TEs) or jumping genes are DNA sequences that have an intrinsic capability to move within a host genome from one genomic location to another. Studies show that the presence of a TE within or adjacent to a functional gene may alter its expression. TEs can also cause an increase in the rate of mutation and can even mediate duplications and large insertions and deletions in the genome, promoting gross genetic rearrangements.

View Article and Find Full Text PDF

The protein disulfide bond is a covalent bond that forms during post-translational modification by the oxidation of a pair of cysteines. In protein, the disulfide bond is the most frequent covalent link between amino acids after the peptide bond. It plays a significant role in three-dimensional (3D) ab initio protein structure prediction (aiPSP), stabilizing protein conformation, post-translational modification, and protein folding.

View Article and Find Full Text PDF

Carbohydrate-binding proteins play vital roles in many important biological processes. The study of these protein-carbohydrate interactions, at residue level, is useful in treating many critical diseases. Analyzing the local sequential environments of the binding and non-binding regions to predict the protein-carbohydrate binding sites is one of the challenging problems in molecular and computational biology.

View Article and Find Full Text PDF

Supersecondary structure (SSS) refers to specific geometric arrangements of several secondary structure (SS) elements that are connected by loops. The SSS can provide useful information about the spatial structure and function of a protein. As such, the SSS is a bridge between the secondary structure and tertiary structure.

View Article and Find Full Text PDF

Motivation: Identification of DNA-binding proteins from only sequence information is one of the most challenging problems in the field of genome annotation. DNA-binding proteins play an important role in various biological processes such as DNA replication, repair, transcription and splicing. Existing experimental techniques for identifying DNA-binding proteins are time-consuming and expensive.

View Article and Find Full Text PDF

The success of solving the protein folding and structure prediction problems in molecular and structural biology relies on an accurate energy function. With the rapid advancement in the computational biology and bioinformatics fields, there is a growing need of solving unknown fold and structure faster and thus an accurate energy function is indispensable. To address this need, we develop a new potential function, namely 3DIGARS3.

View Article and Find Full Text PDF

An important unsolved problem in molecular and structural biology is the protein folding and structure prediction problem. One major bottleneck for solving this is the lack of an accurate energy to discriminate near-native conformations against other possible conformations. Here we have developed sDFIRE energy function, which is an optimized linear combination of DFIRE (the Distance-scaled Finite Ideal gas Reference state based Energy), the orientation dependent (polar-polar and polar-nonpolar) statistical potentials, and the matching scores between predicted and model structural properties including predicted main-chain torsion angles and solvent accessible surface area.

View Article and Find Full Text PDF

An accurate prediction of real value accessible surface area (ASA) from protein sequence alone has wide application in the field of bioinformatics and computational biology. ASA has been helpful in understanding the 3-dimensional structure and function of a protein, acting as high impact feature in secondary structure prediction, disorder prediction, binding region identification and fold recognition applications. To enhance and support broad applications of ASA, we have made an attempt to improve the prediction accuracy of absolute accessible surface area by developing a new predictor paradigm, namely REGAd(3)p, for real value prediction through classical Exact Regression with Regularization and polynomial kernel of degree 3 which was further optimized using Genetic Algorithm.

View Article and Find Full Text PDF